International Journal of Engineering Research and Development
e- ISSN: 2278-067X, p-ISSN: 2278-800X, www.ijerd.com
Volume 22, Issue 2 (February 2026), PP 33-40

Quality and Quality Concepts in Software-Industries

Roopa B. Math!, Prasadu Peddi?

Research Scholar, Department of Computer Science, Sunrise University, Alwar,
2Research Supervisor, Department of Computer Science, Sunrise University, Alwar

Abstract

The idea of quality in software industries has become a crucial factor in determining an organization's success
in the quickly changing digital age. The aspects of software quality, quality management techniques,
measurement strategies, and the difficulties businesses encounter while putting quality-centric procedures into
place are all covered in this essay. Global quality standards and new developments that influence software
development quality requirements are also covered. The objective is to offer a cogent synthesis of theoretical
frameworks and useful insights for improving software services and product quality.

Date of Submission: 24-01-2026 Date of acceptance: 06-02-2026

I. INTRODUCTION

In the past, system stability and error-free code were the main goals of software quality. The emphasis
switched to a more comprehensive, all-encompassing view of quality as software systems became more
complicated and consumers became more demanding. These days, software quality encompasses a variety of
factors that impact the overall user experience and operational effectiveness of software programs, including
security, scalability, usability, and even environmental sustainability. It is impossible to exaggerate the
significance of software quality. Users demand software to operate smoothly, be user-friendly, and offer a
dependable experience due to the quick expansion of the digital economy. Low-quality software can lead to
expensive mistakes, unhappy customers, legal troubles, and reputational damage. Software malfunctions can
have dire repercussions including financial disaster in vital industries like healthcare, banking, and
transportation. As a result, maintaining good software quality is both a fundamental business strategy and an
operational requirement.

Compared to other technical fields, software quality is more difficult to define because it includes not
just error-free code but also dependability, usability, efficiency, and maintainability all of which frequently
change over the course of the software lifetime. One of the most important components of software engineering
is software quality, which is recognized as a strategic advantage for businesses in the software sector. The
degree to which a software product satisfies user needs, complies with specifications, and operates dependably
in designated contexts is referred to as software quality. In the context of software development, quality is the
extent to which a software product satisfies customer-defined functional requirements, satisfies non-functional
performance criteria, and conforms to industry standards and best practices. Low-quality software causes
malfunctions, security lapses, and expensive upkeep. Therefore, it is essential for stakeholders in the software
industry to comprehend quality and its underlying ideas.

In the context of contemporary software companies, this study investigates the changing notion of
software quality. It addresses the significance of quality from the viewpoints of various stakeholders, such as
developers, users, and companies. In order to enhance the consistency, dependability, and performance of
software products, the article also explores quality management frameworks, quality measurement methods, and
tools. It also draws attention to the difficulties businesses encounter when putting into practice efficient quality
procedures and the new developments that will influence software quality management in the future.

Giants like Tata Consultancy Services (TCS), Infosys, HCL Technologies, and Wipro consistently rank
among India's top software companies based on market capitalization or revenue. These companies are followed
by Tech Mahindra, LTI-Mindtree, Cognizant (India operations), Accenture, Persistent Systems, and Mphasis.
Global companies like Oracle, IBM, and Microsoft also have significant Indian footprints and concentrate on
digital transformation, cloud, Al, and enterprise solutions. These businesses drive innovation in cyber-security,
cloud computing, and artificial intelligence by specializing in IT services, consulting, and outsourcing.
Bengaluru, Pune, Hyderabad, and NCR are important hubs.

33

http://www.ijerd.com/

Ecological Risk Assessment Framework For Analyzing The Threats To The Avian Diversity

II. DEFINING SOFTWARE QUALITY

Software quality is defined by a collection of attributes that indicate how effectively software satisfies
both functional and non-functional requirements, according to ISO/IEC 25010. Quality can be accessed from the
viewpoints of the system, the developer, and the consumer. Software Quality Attributes are characteristics that
make it easier for experts in software testing to gauge a product's performance. They are essential in assisting
software architects in ensuring that a program will function according to the client's demands. In the early

phases of software testing, recommend doing tests that evaluate the intended functionality of a system.

Jci|

Usability

@@

Functionality

|

e
B

Performance

y;

Software quality is a complex concept that changes
over time as user expectations and the software
industry both expand. The degree to which a software
product fulfills user needs, meets or surpasses criteria,

@\ Efficiency \\ - Renahimy%% and .sucgessfully, dependal?ly, and efficiently carries
SOFTWARE out its intended purpose is referred to as software
_— QUALITY ATTRIBUTES quality. Howeyer, many viewpoints on what deﬁnps
‘\é}r Flexibility / \ Testability @0 software quality have emergeq due to the comple?(lty
of software systems and the diverse needs of various
Security Avallability stakeholders such as developers, consumers, and
Imareperabiity @ enterprises. Various aspects of software quality are
i_jz listed in Table 1.
Fig. 1 Software Quality Attributes
(Source: https://codoid.com/software-testing/the-basics-of-software-quality-attributes/)
Table 1. Important aspects of software quality
1. | Functionality Accuracy, suitability, and compliance with specifications
2. | Reliability Ability to maintain performance under defined conditions
3. | Usability Ease of use and user understanding
4. | Efficiency Resource optimization and performance
5. | Maintainability Ease of modification and correction
6. | Portability Adaptability to different environments
7. | Security Protecting data and preventing unauthorized access or misuse
8. | Compatibility Ability to work well with other software or hardware

III. MODELS FOR DEFINING SOFTWARE QUALITY

Functionality, dependability, usability, efficiency, maintainability, portability, security, and compatibility are
just a few of the many attributes that make up the concept of software quality. These attributes, can be
customized to particular sectors, applications, or user needs, serve as the basis for assessing the quality of
software. A thorough grasp of these elements and the application of best practices are necessary to produce
high-quality software that satisfies both technical and user-driven quality criteria.

3.1. The Software Quality Assurance (SQA) Model

Software quality assurance aims to guarantee that software satisfies certain requirements and standards.
Throughout the software development lifecycle, SQA uses process audits, inspections, and verification
techniques to find problems early and enhance the product before it is released.

3.2. McCall’s Quality Model

The 11 components of McCall's model, which was created in the 1970s, are divided into three main criteria:
product operation, product revision, and product transition. These factors, which closely correspond with the
previously described dimensions, highlight elements like dependability, efficiency, maintainability, and
mobility.

3.3. Boehm’s Model

Boehm's quality model focuses on recognizing and comprehending the essential characteristics such as
accuracy, efficiency, integrity, and usability that contribute to software quality. Boehm has put forth the idea of
a cost-to-quality link, which holds that investing in quality early in the software lifecycle lowers overall costs
because there are fewer faults and subsequent maintenance expenses.

34

Ecological Risk Assessment Framework For Analyzing The Threats To The Avian Diversity

IV. QUALITY ASSURANCE VS QUALITY CONTROL

Meeting the demands, expectations, and requirements of a user who is requesting software or an app is known
as software quality (SQ). The goal of SQ is to ensure that the final product is free of any potential flaws,
mistakes, or faults. During the development process, certain predetermined standards must be adhered to in
order to achieve software quality. Separate the terms "quality" and "assurance" to gain a quick understanding. In
organizational terms, assurance refers to enterprise management that guarantees optimal performance of the
generated product. Become confident that the result will be positive beforehand. The assurance is a guarantee
that the product will work flawlessly and live up to the customer's expectations. To put it briefly, quality
assurance (QA) refers to all activities focused on developing procedures and standards for confirming that
software satisfies quality requirements, refer Fig. 2.

Quality Control, commonly referred to
as QC, is a software testing procedure
that guarantees the quality of goods or
services complies with the quality
management system and technique to
confirm the product's quality.
Statistical quality control is the process
of applying statistical methods and
tools to the final software product. In
contrast to quality assurance, quality
control examines the finished goods'
quality instead of the process.

QUALITY MANAGEMENT

Quality control Quality assurance Quality planning
‘ E P[rf;f i Quality

plan
Product Stakeholders'
responsibilities

Testing

activities p| OJF'(t

Quality

plan

Process QM

prerequisites
TtEI prise

Fig.2 QA Vs QC (Sourcs: https://www.scnsoft.com/software-testing/quality-management-optimization)

Activities that are product-oriented and result-oriented make up quality control, or QC. The goal of quality
control is to give businesses the assurance they need to create applications that meet both customer and quality
standards. When a quality control procedure finds a problem with the finished product, it should ideally be fixed
before the final consumer receives it. In other words, quality control (QC) is the process of making sure a
product or service satisfies both traditional quality standards and customer demands. Pre-defining procedures,
prompt quality audits, statistical process control, and other quality management-focused techniques are
examples of such operations.

Table 2. Quality Assurance Vs Quality Control

Quality Assurance (QA) Quality Control (QC)

A proactive process A Reactive process

Take measures in advance (planning) Performed when flaws are identified

Concerned with defect prevention Concerned with detecting the flaws

Ensures the product is of greater quality Validates the quality of the product

Makes sure the developers are doing the right Makes sure the end result is acceptable

perform the Quality audit, as a part of QA Testing/analysis is the main process of QC

Create the deliverables

Verify the deliverables

Entire software development team is responsible

Only the testing team is responsible

Enable the software’s quality

Verify the software’s quality

Involves test planning and execution

Includes creating and maintaining test reports

Quality assurance is a plan

Quality control is to check

It examines the plan to see if it was effective in
avoiding any potential flaws

It looks for flaws in the product and try to fix them
while it’s being made

The goal of QA is to stop software flaws

The goal of QC is to find flaws in any software

This brings an end to our examination of the most controversial topic: the difference between quality control and
assurance. The importance of these two jobs to the software development life cycle has been demonstrated in
this blog. When we have both QA and QC procedures in place, we can ensure that the product is developed in
compliance with customer specifications and with thorough QA testing and analysis. Obtaining results from
consistently met QA standards and processes is the aim of QA. It ensures that everything produced is safe,
efficient, and of the best quality for customers while avoiding any defects.

35

Ecological Risk Assessment Framework For Analyzing The Threats To The Avian Diversity

V. QUALITY MANAGEMENT FRAMEWORK IN SOFTWARE DEVELOPMENT

By employing structured techniques known as quality management frameworks (QMF), organizations can
preserve and improve the quality of their software processes and products. These frameworks provide processes,
best practices, and standards that companies can utilize to create dependable, superior software. Furthermore,
they ensure that quality is not a one-time effort but is incorporated into every phase of the software development
lifecycle (SDLC). A quality management framework in software development typically incorporates quality
assurance (QA) methodologies, process improvement models, measurement tools, and standards to ensure that
the final software product meets or exceeds user expectations and regulatory requirements. ISO standards,
CMMI, TQM, and more modern agile approaches that emphasize quality as a continuous, team-based endeavor
are the most widely used quality management frameworks in the software business.

4.1. ISO/IEC Standards

A set of standards created by the International Organization for Standardization (ISO) and the International
Electrotechnical Commission (IEC) offer a widely accepted framework for software quality management. These
standards concentrate on making sure that software is built using repeatable, effective, and efficient procedures
and satisfies client needs.

4.1.1 ISO/IEC 9001: Quality Management Systems

The most popular quality management standard in the world is ISO/IEC 9001. It guarantees that they
continuously provide goods or services that satisfy client and legal standards and offers a methodical approach
to managing organizational operations.When it comes to software development, ISO/IEC 9001 highlights:

e Process management: Every step of the software development process, from planning to delivery,
needs to be precisely defined, recorded, and standardized. This lessens product quality variability and
increases uniformity.

e Customer focus: The framework emphasizes that software design and development should be guided
by the needs and expectations of the user. In order to continuously enhance the product, it makes sure
that user feedback is incorporated into the development cycle.

e Continuous improvement: ISO/IEC 9001 encourages a culture of continuous improvement, which
means that even after software is deployed, its quality is continuously evaluated and enhancements are
made as part of the operational philosophy of the company.

For instance, a business that develops financial software might use ISO/IEC-9001 to standardize their
development process. This would guarantee that every step of the process from requirement gathering to post-
deployment maintenance is precisely defined and consistently adhered to, resulting in improved quality and
client satisfaction.

4.1.2. ISO/IEC 25010: Software Product Quality Model

The quality standards for software products are outlined in ISO/IEC 25010. It focuses on measuring and
evaluating software quality in a number of important areas, such as functionality, dependability, usability,
efficiency, and maintainability (as covered in previous sections). This standard offers a framework for assessing
a software product's overall quality using these several characteristics. By using ISO/IEC 25010, organizations
can assess the quality of their software at various phases of development, guaranteeing that every aspect of
quality is consistently tracked and enhanced.

4. 2. Capability Maturity Model Integration (CMMI)

One of the most popular frameworks for process optimization in software development is the Capability
Maturity Model Integration (CMMI). CMMI offers principles for improving software development processes
over time and assists organizations in determining how mature their processes are. By concentrating on a
number of process areas that assist companies in producing high-quality software, CMMI is intended to promote
continuous improvement.

4.2.1. CMMI Maturity Levels

Each of the five maturity levels in CMMI represents a more sophisticated and efficient method of software
development. An organization's ability to consistently produce high-quality software increases with its level of
maturity.

1. Level I: Initial: Ad hoc and unstructured procedures are common at this level. In certain cases,
organizations might produce high-quality software, but this is not always the case, and the outcomes
could differ significantly.

2. Level 2: Managed: To guarantee that projects are successfully planned, carried out, and monitored,
fundamental project management procedures are adopted. Although it is still reactive, quality control is
more organized.

36

Ecological Risk Assessment Framework For Analyzing The Threats To The Avian Diversity

3. Level 3: Defined: At this stage, companies have well defined procedures that are recorded and adhered
to throughout the whole company. Quality is a planned component of every stage of the SDLC, and
software development is consistent.

4. Level 4: Quantitatively Managed: Processes are tracked and managed using quantitative metrics.
Software quality data is gathered, and statistical analysis is utilized to forecast and enhance results,
guaranteeing that quality is continuously attained.

5. Level 5: Optimizing: The organizational culture incorporates constant improvement. Process
optimization is the main focus, and feedback loops are employed to improve both product quality and
development procedures. Regular innovations and enhancements are done to increase the performance
and quality of software.

As an illustration, a software business moving through the CMMI levels might start with a reactive approach to
software testing (Level 1) and eventually develop into a highly sophisticated procedure that employs predictive
analytics to guarantee quality at every stage of development (Level 4).

4. 3. Total Quality Management (TQM)

A thorough and organized method for raising quality across the board in a business is called total quality
management, or TQM. Every individual in the company, from senior management to front-line workers, is
involved in TQM's ongoing process, service, and product improvement. TQM places a strong emphasis on the
following ideas in software development:

e Customer satisfaction: By producing software that is dependable, easy to use, and satisfies functional
requirements, TQM aims to both meet and beyond customer expectations.

e Employee involvement: Including every team member in quality improvement projects guarantees that
quality is deeply embedded in the company's culture. Quality is maintained at every level by
developers, testers, managers, and even support personnel.

e Process-centered approach: TQM mandates that businesses concentrate on enhancing the procedures
that result in software development. Teams can enhance overall software quality by detecting
inefficiencies or bottlenecks in the SDLC.

e Continuous improvement: TQM encourages firms to adopt new technologies, improve processes, and
innovate in order to increase quality by fostering a culture of continuous learning and adaptation.

For instance, a business creating a mobile application might apply TQM concepts to involve every member of
the team in enhancing usability. Updates are released iteratively depending on customer satisfaction metrics
after user feedback is routinely collected and examined.

4.4 Agile Quality Management Frameworks

Agile approaches place more emphasis on flexibility, teamwork, and quick iterations than traditional
frameworks like ISO/IEC, CMMI, and TQM, which are concentrated on process standardization and gradual
development. Agile emphasizes providing software in manageable chunks and continuously improving the
product in response to user feedback. Agile teams frequently use Test-Driven Development (TDD), Continuous
Integration (CI), and Agile Testing techniques to continuously and iteratively guarantee product quality.

4.4.1. Agile Principles for Quality Management

e Customer collaboration: Ongoing customer feedback ensures that the program satisfies user needs.

e Adapting to change: Agile teams ensure that software stays high-quality and relevant throughout its
lifecycle by swiftly adjusting to shifting needs or market conditions.

e [terative delivery: Agile teams produce functioning, tested software on a regular basis through brief
development cycles (sprints), guaranteeing that quality is continuously evaluated and improved.

4.5. Lean Software Development

Another contemporary approach to quality management that draws inspiration from lean manufacturing is lean
software development. It focuses on cutting waste, increasing productivity, and providing value to customers
faster. The main goals of lean quality management are:
e Value stream mapping: locating and eliminating activities in the development process that don't
contribute value.
e Reducing bottlenecks: Improving flow by fixing inefficiencies in the process.
e Empowering teams: Encouraging decentralized decision-making to allow development teams to
quickly address quality concerns without waiting for management approval.

37

Ecological Risk Assessment Framework For Analyzing The Threats To The Avian Diversity

VI. . EMERGING TRENDS AND TECHNOLOGIES SHAPING SOFTWARE QUALITY

Due to changes in industry processes and technological breakthroughs, the software quality landscape is
changing dramatically. The way that software quality is seen and attained is changing due to a number of new

trends:

1.

DevOps and Continuous Integration/Continuous Delivery (CI/CD): Using DevOps to integrate
development and operations is one of the biggest trends in software quality today. This change places a
strong emphasis on cooperation, automation, and ongoing feedback between the operations and
development teams. Automated testing is incorporated into all phases of the software development
lifecycle with CI/CD pipelines, facilitating the prompt detection and correction of flaws. This results in
quicker delivery cycles without sacrificing quality. Developers and operations teams have a close
working connection that reduces silos and increases accountability by fostering a culture of shared
responsibility for quality.

Artificial Intelligence and Machine Learning in Testing: The emergence of Al-driven testing is a
revolutionary development in software quality assurance. Automated tests can adjust to new changes in
the codebase without requiring frequent manual updates thanks to AI and machine learning
technologies. Al is able to prioritize testing efforts and forecast which software components are most
likely to have flaws by analyzing past data. This speeds up and improves the accuracy of defect
identification while drastically cutting down on test planning time.

Security-Driven Development (DevSecOps): Security is now a crucial component of the quality
process due to the growing sophistication of cyber threats. By including security procedures into the
DevOps pipeline, DevSecOps makes sure that security flaws are fixed early in the development process
rather than after release. This proactive strategy guarantees that the software satisfies regulatory
compliance requirements and lowers the possibility of expensive security breaches.

Cloud-Native and Microservices Architectures: Software quality faces both possibilities and problems
as a result of the migration to cloud-native and microservices architectures. On the one hand, these
structures facilitate quicker deployment, flexibility, and scalability. However, they also create new
difficulties for quality assurance, monitoring, and testing across many environments and services. To
maintain quality in such systems, service-level agreements (SLAs), distributed monitoring tools, and
continuous testing are crucial.

User-Centered Quality: The notion of software quality has broadened to encompass usability,
accessibility, and user happiness as user experience (UX) has taken center stage in software design.
Nowadays, businesses are spending more on UX testing and getting user input frequently throughout
the development process. This change guarantees that software not only satisfies technical
requirements but also provides end users with an easy-to-use and entertaining experience.

VII.CHALLENGES IN ACHIEVING SOFTWARE QUALITY

Even though its significance is well acknowledged, many businesses still struggle to achieve software quality.
The following difficulties are especially common:

1.

The intricacy of contemporary software systems Software systems nowadays are bigger and more
complex than in the past. The complexity of testing and guaranteeing quality rises dramatically with the
integration of many platforms, technologies, and outside services. Furthermore, emerging paradigms
like distributed systems and microservices architectures introduce further levels of complexity that
complicate quality control.

Time and Resource Constraints: Software development teams are frequently under pressure to produce
new features swiftly in order to stay competitive in today's fast-paced market. Due to the pressure to
meet deadlines, testing cycles may be reduced and errors may be ignored, which could result in quality
compromises. Because of this, developers and testers have to strike a balance between providing value
and giving priority to the most important concerns.

Changing Stakeholder Expectations and Requirements: The software industry is well known for its
constantly changing requirements. The previously tested program may become out-of-date or
unreliable if new features are introduced or user needs change. It might be difficult to keep track of
these modifications and make sure the program keeps up with user expectations. This becomes even
more difficult in agile development since quick iterations and constant feedback necessitate constant
re-evaluation of quality metrics.

38

Ecological Risk Assessment Framework For Analyzing The Threats To The Avian Diversity

4. Lack of Skilled Workforce: To produce high-quality software, experts who comprehend not just coding
but also quality assurance concepts, testing procedures, and best practices are needed. Building teams
with sufficient knowledge in these areas is still a challenge for many firms, particularly in specialized
disciplines like automation testing, performance optimization, and security testing.

VIII. CONCLUSION

As the digital landscape changes, software quality plays an increasingly important role in the software
industry. Software quality affects customer satisfaction, long-term commercial outcomes, and an organization's
reputation in addition to the immediate user experience. Strong software quality frameworks, processes, and
standards are becoming more and more important as companies depend more and more on software to run their
operations and provide services. In software development, quality is an ongoing activity that needs to be
integrated into the entire development lifecycle rather than being a one-time accomplishment. In addition to
using contemporary tools and technology, this process calls for an organizational culture shift that prioritizes
quality across the entire process, from requirement collection to post-deployment maintenance. Delivering
products that meet or above user expectations requires quality assurance techniques including automated defect
tracking, continuous testing, and integration of best practices.

In conclusion, software quality is a crucial pillar of the software industry that demands constant
attention, creativity, and flexibility. Software companies may overcome present obstacles and set themselves up
for future success with the correct combination of approaches, resources, and a culture of quality. Making sure
software is of high quality not only results in happy clients and corporate expansion, but it also advances the
technology sector as a whole.

IX. THE FUTURE OF SOFTWARE QUALITY

Automation, artificial intelligence, and cloud technologies will surely have an impact on software
quality in the future. The need for automated quality checks, real-time monitoring, and Al-driven defect
prediction will increase with the complexity of software systems. In order to guarantee quality at every stage,
teams will also need to embrace more flexible, cooperative methods as the distinction between development and
operations becomes increasingly hazy. In conclusion, producing high-quality software is a complex task that
calls for a blend of cutting-edge technology, efficient management techniques, and a continuous improvement
culture. Software development companies may stay ahead of the curve and produce solutions that not only meet
but beyond consumer expectations by utilizing quality frameworks, embracing new trends, and cultivating a
quality-focused mindset.

Producing software of the highest caliber is not easy. Organizations still struggle to maintain quality
despite improvements in tools, processes, and standards because of things like the speed at which technology is
developing, the need for prompt delivery, and the increasing complexity of software systems. Organizations
must implement scalable, adaptable quality management systems, make training and skill development
investments, and stay up to date with new trends like DevOps and artificial intelligence in order to meet these
difficulties.

REFERENCES

[1] D. M. B. Paiva, A. P. Freire, and R. P. de Mattos Fortes, “Accessibility and Software Engineering Processes: A Systematic
Literature Review,” J. Syst. Softw., vol. 171, p. 110819, Jan. 2021, doi: 10.1016/j.jss.2020.110819.

2] H. Femmer, D. Méndez Fernandez, S. Wagner, and S. Eder, “Rapid quality assurance with requirements Smells,” J. Syst. Softw.,
vol. 123, pp. 190-213, Jan. 2017, doi: 10.1016/j.jss.2016.02.047.

[3] S. Khalid, U. Rasheed, M. Abbas, A Model Driven Framework for Standardizing Requirement Elicitation by Quantifying Software
Quality factor In2021 International Conference on Innovative Computing (ICIC), Nov (2021), pp. -
6, 10.1109/ICIC53490.2021.9693054

[4] H.F. Hofmann, F. Lehner, Requirements engineering as a success factor in software projects, IEEE Softw, 18 (4) (Jul. 2001),
pp. 58-66, 10.1109/MS.2001.936219

[5] Association for Computing Machinery-Digital Library, “Requirement Elicitation Framework for Child Learning Application - A
Research Plan,” in ICSIM 2019: Proceedings of the 2nd International Conference on Software Engineering and Information
Management, Association for Computing Machinery, 2019, pp. 129—133. doi: https://doi.org/10.1145/3305160.3305195.

[6] J. Medeiros, A. Vasconcelos, C. Silva, M. Gouldo, Quality of software requirements specification in agile projects: a cross-case
analysis of six companies, J Syst Softw, 142 (Aug. 2018), pp. 171-194, 10.1016/j.js5.2018.04.064

[7] S. W. Ali, Q. A. Ahmed, and I. Shafi, “Process to enhance the quality of software requirement specification document,” in 2018
International Conference on Engineering and Emerging Technologies (ICEET), Feb. 2018, pp. 1-7. doi:
10.1109/ICEET1.2018.8338619.

[8] M. H. Osman and M. F. Zaharin, “Ambiguous Software Requirement Specification Detection: An Automated Approach,”
in Proceedings of the 5th International Workshop on Requirements Engineering and Testing, Gothenburg Sweden: ACM, Jun.
2018, pp. 33—40. doi: 10.1145/3195538.3195545.

9] S. M. Abbas, K. A. Alam, U. Igbal, and S. Ajmal, “Quality Factors Enhancement of Requirement Engineering: A Systematic

39

Ecological Risk Assessment Framework For Analyzing The Threats To The Avian Diversity

[10]

[11]

[12]

[13]

[14]

[15]

Literature Review,” in 2019 International Conference on Frontiers of Information Technology (FIT), Dec. 2019, pp. 13-135. doi:
10.1109/F1T47737.2019.00013.

Y. Xu, W. Ge, X. Li, Z. Feng, X. Xie, and Y. Bai, “A Co-Occurrence Recommendation Model of Software Security Requirement,”
in 2019 International Symposium on Theoretical Aspects of Software Engineering (TASE), Jul. 2019, pp. 41-48. doi:
10.1109/TASE.2019.00-21.

S. S. A. Bukhari, M. Humayun, S. A. A. Shah, and N. Z. Jhanjhi, “Improving Requirement Engineering Process for Web

Application Development,” in 2018 12th International Conference on Mathematics, Actuarial Science, Computer Science and
Statistics (MACS), Nov. 2018, pp. 1-5. doi: 10.1109/MACS.2018.8628422.

S. Jeong, H. Cho, and S. Lee, “Agile requirement traceability matrix,” in Proceedings of the 40th International Conference on
Software Engineering: Companion Proceeedings, Gothenburg Sweden: ACM, May 2018, pp. 187-188. doi:
10.1145/3183440.3195089.

1. Zafar, A. Shaheen, A. K. Nazir, B. Magbool, W. H. Butt, and J. Zeb, “Why Pakistani Software Companies don’t use Best
Practices for Requirement Engineering Processes,” in 2018 IEEE 9th Annual Information Technology, Electronics and Mobile
Communication Conference (IEMCON), Nov. 2018, pp. 996-999. doi: 10.1109/IEMCON.2018.8614913.

S. Anwer, L. Wen, and Z. Wang, “A Systematic Approach for Identifying Requirement Change Management Challenges:
Preliminary Results,” in Proceedings of the Evaluation and Assessment on Software Engineering, Copenhagen Denmark: ACM,
Apr. 2019, pp. 230-235. doi: 10.1145/3319008.3319031.

F. Cowperthwaite, J. Horkoff, S. Kopczynska, The Effects of Native Language on Requirements Quality
In 2023 18th Conference on Computer Science and Intelligence Systems (FedCSIS), Sep (2023), pp. 913-917, 10.15439/2023F9537

40

