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Abstract:- The maximum flow problem is one of the combinatorial optimization problems. The objective of 

the problem is to find maximum amount of flow from the source to the sink in a network. Due to lack of 

information in some networks, different types of uncertainty in arc capacities arise. To deal with such situations 

some scholars consider the arc capacities as random variable or fuzzy variable and solve the problem using 

probability theory and fuzzy theory. In absence of sufficient data for fitting of appropriate probability 

distribution for arc capacities or unobservable conditions for measuring arc capacities, neither probability theory 

nor fuzzy set theory shall be applicable. In this situation, subjective estimation of arc capacities is done by the 

experts who are inclined to estimate the values in form of certain range as per their belief degree. These 

estimates can be best characterized by rough variables. In this paper, we have studied maximum flow problem 

using rough variables as arc capacities and augmenting path algorithm is used to find the sure maximum flow 

and possible maximum flow. Further, two compromise solutions are proposed using uncertainty theory.  
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I. INTRODUCTION 

The Maximum Flow Problem (MFP) is one of the network optimization problems with wide 

applications. The problems like electric power transmission, traffic control, communication networks, computer 

networks, water supply network etc are modelled into MFP problems. In conventional MFP, it is assumed that 

the decision maker is certain about the capacities of the arcs, flows between different nodes through the arc 

joining the nodes. But in real life situations, there always exist uncertainty in arc capacities, demand and cost 

etc. 

When the arc capacities of the network are uncertain, some authors have considered the arc capacities 

as random variables or fuzzy variables. Frank and Hakimi [1] assume that in a communication network, each arc 

has a random capacity and attempted to find the probability of a flow between vertices. Frank and Frisch [2] 

determined the Maximum Flow Problem where each arc capacity is a continuous random variable. Kim and 

Roush [3] are the first to develop the optimal flow taking arc capacities as fuzzy number but Chanas and 

Kolodziejezyk [4, 5, 6] introduced the main works on the field of fuzzy maximum flow. Chanas and 

Kolodziejczyk [4] have presented an algorithm for a graph with crisp structure and fuzzy capacities (the arc has 

a membership function associated in their flow). Chanas and Kolodziejczyk [5] have taken the flow as real 

number and the capacities have upper bounds and lower bounds with a satisfaction function. Further, Chanas 

and Kolodziejczyk [6] have studied the integer flows in a network with fuzzy capacity constraint. Again, Chanas 

et al. [7] developed an optimal flow on imprecise structure called fuzzy graph. Liu and Kao [8] have 

investigated the network flow when the arc lengths are fuzzy number, generalised fuzzy number etc. 

        

In reality, there exists indeterminacy about the parameters like arc capacities, costs and demands in a 

network flow. That indeterminacy can be described by random variables if samples are available. But, when 

sample is not available or the values are unobservable, then the techniques based on probability theory or fuzzy 

set theory is not appropriate to deal with the problems. In this case, experts are invited for their subjective 

assessment of the parameters. To deal with the subjective assessment, uncertainty theory as developed by Liu [9, 

10] can be successfully applied. Han et al. [11] have applied 99-method to find the maximum flow with 

uncertain capacities. Ding [12] has used Zigzag uncertain variable as arc capacities to solve maximum flow 

problem with uncertainty. 

          

 In this paper, we have tried to solve the maximum flow problem taking rough variable as arc capacities. Two 

crisp equivalents as α-pessimistic and α-optimistic value of arc capacities are evaluated.  Applying the 

augmented path algorithm, possible maximum flow and surely maximum flow are calculated. Further, two 

compromise solution processes are also proposed using uncertainty distribution. For illustration a numerical 

example is taken.  
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         This paper is organised as follows: In Section II, some basic concepts used in this paper are introduced. In 

Section III, a maximum flow problem is formulated. In Section IV, two compromise solutions are proposed.  In 

Section V, a numerical example is taken. Finally in Section VI, conclusion of the work is given. 

II. PRELIMINARIES 
A. Uncertainty Theory 

Liu [9][10] has developed uncertainty theory which is considered as a new approach to deal with 

indeterminacy factors when there is a lack of observed data. In this section, some basic concepts of uncertainty 

theory has been reviewed which shall be used to establish a compromise solution of maximum flow problem 

under uncertainty. 

 

Uncertainty measure 

Let L be a  - algebra on a nonempty set . A set function M : L [0,1] is called an uncertain measure if it 

satisfies the following axioms 

Axiom 1: (Normality axiom)       M ( ) = 1 for the universal set  

Axiom 2:  (Duality axiom)          1)()(  CMM  for every event   

Axiom 3: (sub-additive axiom)    For every countable sequence of events 1 2, ,.....   we have       
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The triplet ),,( ML   is called an uncertain space. 

Axiom 4: (Product measure)  Let ),,( kkk ML be uncertainty spaces for k = 1, 2, ... .The product uncertain 

measure  M is an uncertain measure satisfying  
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 where, k  an arbitrary chosen events for kL  for   k = 1, 2, . . .   respectively. 

 

Uncertain variable  

An uncertain variable   ξ  is essentially a measurable function from an uncertainty space to the set of real 

numbers. Let  ξ be an uncertain variable. Then the uncertainty distribution of ξ is defined as      

}{)( xMx     for any real number x.  

Definition 1: An uncertain variable  is called linear if it has linear uncertainty distribution L(a, b) such that 
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where,  a  and  b  are real numbers  with  a < b. 

Definition 2: An uncertain variable ξ is called zigzag if it has a zigzag uncertainty distribution Z(a, b, c) such 

that  
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Definition 3: An uncertain distribution    is said to be regular if its inverse function )(1  
 exists and is 

unique for each  0,1  .  

The linear uncertainty distribution L(a, b) is regular and its inverse uncertainty distribution is 

      ba   )1()(1

                       (3)
 

The zigzag uncertainty distribution Z(a,b,c) is also regular and its inverse uncertainty distribution is 

 φ
-1

(α) = (1 – 2α)a + 2αb         if   α < 0.5 
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       = (2 - 2α) b + (2α – 1) c        if   α ≥ 0.5                    (4) 

  

 

        

B.  Rough variable 

The concept of rough variable is introduced by Liu [10] as uncertain variable. The following 

definitions are based on Liu [10].  Definition 4: Let    be a non empty set, A be  - algebra of subsets of ,

  be an element in A, and   be a non negative, real- valued, additive set function on A. The quadruple 

 , , ,A    is called a rough space. 

Definition 5:  A rough variable   on the rough space  , , ,A    is a measurable function from   to the 

set of real numbers   such that for every Borel set B of   , we have   |   B A     .  

Then the lower and upper approximation of the rough variable  are defined as follows  

 })({ 


           (Upper approximation)  

 })({ 


           (Lower approximation) 

Definition 6: ([a , b], [c , d]) with c ≤ a < b ≤ d is a rough variable, where ξ(λ) = λ from the rough space to the 

set of real numbers and }{}{ baanddc   , A is the Borel algebra on ,   

is the Lebesgue measure. 

Definition 7:   Let  , , ,A    be a rough space. Then the upper and lower trust of event A is defined by 
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The trust of the event A is defined as 
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Definition 8:  Let  1 2 ,     be rough variables defined on the rough space  , , ,A   . Then their sum and 

product are defined as 
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If ξ = ([a , b] , [c , d]) and η = ([p , q] , [r , s]) be two rough variables, then 

 ξ + η = ([a+p , b+q] , [c+r , d+s] 

 kξ = ([ka , kb] , [kc , kd],  if k ≥ 0  

      = ([kb , ka] , [kd , kc],  if k < 0 

 

Definition 9: Let     be rough variables defined on the rough space  , , ,A    and (0,1]  then      

                           sup  sup r | Tr r       and called  -optimistic value of  . 

                       
    sup  inf r | Tr r       is called  -pessimistic value of  . 

 

In our work, we have considered the rough variable  as  = ([a, b] , [c, d]) where c ≤ a < b ≤ d. 

The α-optimistic value of  = ([a, b] , [c, d]) is 
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The α-pessimistic value of  = ([a, b] , [c, d]) is 
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Further, ξinf(α) ≥ ξinf(α)  if α > 0.5 and ξinf(α) ≤ ξinf(α)  if α ≤ 0.5 

 

Definition 10: The trust distribution ϕ : [- , ] → [0 , 1] of a rough variable ξ is defined by 

Φ(x) = Tr { λ   ξ(λ) ≤ x}       (7) 

If      = a,b , ,c d  be a rough variable such that c   a < b   d, then the trust distribution             
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III. PROBLEM DESCRIPTION AND MODEL FORMULATION 
The objective of this paper is to solve maximum flow problem with uncertain arc capacities where the arc 

capacities are taken as rough variables. 

Consider a directed flow network  N = { V,A,c,s,t}  

  Where V = { 1,2,3,…..} is the set of  nodes. 

               A = { (i, j)/ i , j ϵ  V} is the set of arcs. 

               C is the non-negative real valued capacities function dependant on A. 

               s is the source node. 

                t is the sink node. 

Let   u = {uij |  i,j ϵ A } be the set of arc capacities. 

Let f be the total flow from the source node to the sink node t .   

Let xij be the flow along the arc (i, j). 

Let Гk and Ѓk be the set of nodes preceding and following the node k respectively. A flow is feasible if it satisfy 

the following conservation conditions. 
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In deterministic maximum flow problem, the arc capacities are crisp values. But in many real world problem, 

due to uncertainty the arc capacity cannot be taken as crisp. Enough data may not be available to deal the 

uncertainty through probability approach. Even if data is available, they may   be useless due to change in 

conditions or environment. In this situation the capacity data can be obtained from the decision maker‟s subject 

estimation. In case of subjective estimation, it is desirable to give a range instead of a particular value. In this 

paper, we use rough variable to determine the capacity of the arcs under the following assumptions. 

i) The network is directed. 

ii) The network does not contain parallel arcs. 

iii) All capacities are non-negative. 
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Let  ξ = { ξij  | (i, j) ϵ A}, where ξij is a rough variable attached to the arc (i, j). 

Let ξsup(α) and ξinf(α) be the α-optimistic and α-pessimistic value of ξ respectively where   0 ˂ α ˂ 1  be the 

predetermined confidence level provided by the decision maker. 

Sure maximum flow model  
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Possible maximum flow model  
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The above two models are converted to two deterministic models which can be solved by augmented path 

algorithm giving two solutions one as possible maximum flow and the other surely maximum flow. 

 

Algorithm:  

We can design the following optimal solution algorithm for obtaining maximum flow. 

Step 1: Set a predetermined confidence level „α‟ and calculate α-pessimistic value of rough variable      and α-

optimistic value of rough variable. 

Step 2: Construct the corresponding deterministic network N = (V,A,C,s,t) and set the capacity of each arc uij 

equal to ξinf , ξsup . 

Step 3: Apply the Augmented path algorithm to find the Maximum Flow in each case. 

Hence a possible maximum flow and sure maximum flow are obtained. 

 

IV. COMPROMISE SOLUTIONS 
In solving the rough model of maximum flow problem, we find two solutions as possible solution and 

sure solution. But in many cases, the decision maker shall prefer one set of solution rather being confused with 

two sets of solution. In this section, we propose two compromise solutions. 

 

In the proposed compromise solutions, the arc capacities are reduced to uncertain variable and uncertain 

distributions are used.  

When the arc capacities are uncertain variables, the model is transformed to the following form 
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The capacity constraint is to be transformed to deterministic constraint in order to solve the problem. If the 

uncertain variable is regular with distribution function φ(.) , then M{ξij ≤ xij} ≤ α can be transformed to              

xij ≤ φij
-1

(α). 

 

We proposes following theorem to find the compromise solutions  

 

Theorem 1 

If  ξ = ( [a,b],[c,d]) be a rough variable with c ≤ a ˂ b ≤ d , then  
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which is a contradiction.  

Hence ,ξsup ≤ a . 
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which is a contradiction.  

Hence ,ξinf ≥ b . 

(iii) The third one follows from (i) and (ii) 

Let the rough variable ξij = ([aij, bij], [cij, dij]) with  cij ≤  aij ˂ bij ≤  dij be the arc capacity of the arc    (i, j) ϵ A. 

For a predetermined confidence level α, let  pij is the α-optimistic value of ξij  and   qij is the  α- pessimistic value 

of ξij. 

 

Hence,  pij ≤  qij for the choice of α ≥ 0.5 

From (7) it is evident that the trust distribution of  ξij  is linear in [ c, a], [a, b] and [b, d] having same slope in   

[c, a] and [b, d] and different slope in [a, b].  

By theorem 1, for the choice of α , the trust distribution of ξij shall follow the following uncertainty distribution. 

If both pij and qij lies in [aij, bij] then, the trust distribution of ξij can be approximated by the linear distribution 

L[pij, qij]. If aij < pij < bij < qij, then the trust distribution of ξij can be approximated by the zigzag uncertain 

distribution Z(pij, bij, qij). If pij < aij < bij < qij, then the trust distribution of ξij can be approximated by the zigzag 

uncertain distribution Z(aij, bij, qij). If pij < aij < qij < bij, then the trust distribution of ξij can be approximated by 

the zigzag uncertain distribution Z(aij, qij, bij). 

Accordingly, four models are proposed which gives compromise solutions to the problem. In all models α ≥0.5. 

Case 1: If aij < pij < qij < bij, then the model is transformed to the following deterministic form 
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Then the model can be solved by augmented path algorithm to give a compromise solution. 

Case 2: If aij < pij < bij <  qij, then the model can be transformed to the following deterministic form  
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ij ij ij

ij

Max f 

0 { , }

                     x  (2-2 )b  + (2 1) q  ,  (i, j)  A

                     x 0 ,           (i, j)  A 

jj

sj js

j j

f for i s

Subject to x x i V s t

f for i t
 

 

 





     

  
   


 

 


                 (14) 

Then the model can be solved by augmented path algorithm to give a compromise solution. 

Case 3: If pij < aij < bij <  qij, then the model can be transformed to the following deterministic form  

ij ij ij

ij

Max f 

0 { , }

                     x  (2-2 )  + (2 1) q  ,  (i, j)  A

                     x 0 ,           (i, j)  A 

jj

sj js

j j

f for i s

Subject to x x i V s t

f for i t

b

 

 

 





     

  
   


 

 


                 (15) 

Then the model can be solved by augmented path algorithm to give a compromise solution. 

Case 4: If pij < aij < qij <  bij, then the model can be transformed to the following deterministic form form  

ij ij ij

ij

Max f 

0 { , }

                     x  (2-2 )  + (2 1) b  ,  (i, j)  A

                     x 0 ,           (i, j)  A 

jj

sj js

j j

f for i s

Subject to x x i V s t

f for i t

q

 

 

 





     

  
   


 

 


                 (16) 

Then the model can be solved by augmented path algorithm to give a compromise solution. 

 

V. NUMERICAL EXAMPLE 
Consider a power supply network whose transmission lines are numbered (i, j). Consider that the 

capacities of the line (i, j) are rough variables denoted as ([ai ,bi][ci,di]) such that ci ≤ ai < bi ≤ di. 

Considering rough techniques, we obtained α-optimistic maximum flow and α-pessimistic maximum flow under 

different trust level ( α= 0.8 and α=0.9) 

The Fig-1 depicts the flow network and the table-1 depicts the rough arc capacities, α-optimistic value and  α-

pessimistic value of each arc under trust level  α= 0.8 and α=0.9.  

 

 
Fig-1:  Flow network 

 

Table-1: Rough arc capacities and related parameters 
Arc Arc Capacity α = 0.9 α = 0.8 

α-

Optimist
ic 

value 

α-

Pessimis
tic 

value 

Inverse 

Zigzag 
Distribution 

ϕ-1(α) 

α-

Optimistic 
value 

α-

Pessimistic 
value 

Inverse 

Linear 
Distributi

on ϕ-1(α) 
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(1, 

2) 

([50,70], [40, 

80]) 48 72 71.6 56 64 62.4 

(1, 
3) 

([70, 90], 
[60,100]) 68 92 91.6 76 84 82.4 

(2, 

3) 

([25, 45], 

[15, 55]) 23 47 46.6 31 39 37.4 

(2, 

4) 

([40, 60], 

[30, 70]) 38 62 61.6 46 54 52.4 

(2, 
5) 

([30, 50], 
[20, 60]) 28 52 51.6 36 44 42.4 

(2, 

6) 

([10,30], [00, 

40]) 8 32 31.6 16 24 22.4 

(3, 

6) 

([80,100], 

[70,110]) 78 102 101.6 86 94 92.4 

(4, 
5) 

([20, 40], 
[10, 50]) 18 42 41.6 26 34 32.4 

(4, 

7) 

([55,75], [45, 

85]) 53 77 76.6 61 69 67.4 

(5, 
7) 

([15, 35], 
[05, 45]) 13 37 36.6 21 29 27.4 

(5, 

8) 

([20, 40], 

[10, 50]) 18 42 41.6 26 34 32.4 

(6, 

5) 

([25, 45], 

[15, 55]) 23 47 46.6 31 39 37.4 

(6, 
8) 

([35, 55], 
[25, 65]) 33 57 56.6 41 49 47.4 

(7, 

8) 

([60, 80], 

[50, 90]) 58 82 81.6 66 74 72.4 

 

Using augmented path algorithm, the maximum flows under different conditions are depicted in the following 

table (Table 2). 

 

Table 2: Result 
            α = 0.9 Value Model          α = 0.8 Value Model 

Sure Maximum flow    99 10 Sure Maximum flow  128  10 

Possible Maximum flow 164 11 Possible Maximum flow  148  11 

Compromise Maximum flow 163.2 15 Compromise Maximum 

flow 

 147.2  13 

      

VI. CONCLUSION 
In absence of sufficient data, the decision maker shall take the values of the parameters by the subjective 

estimation of the domain experts. It is natural that the experts give their subjective estimation in a range of 

values which can be characterized by rough variables. In this work, the arc capacities of a network are taken as 

rough variables. In order to find the maximum flow, the rough variables are converted to two crisp values as α-

optimistic and α-pessimistic values. Two solutions as possible flow and sure flow are obtained. Further, using 

uncertain theory, four compromise solutions are also proposed depending on the value of the confidence level α.  
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