Study of Decomposing Polymer Matrix Composites at High Temperature Using FEA

Gudepu. Adinarayana¹, Kancharla. Bullibabu², Panasa. Nagasarveswararao³ ¹Assoc.Prof, Department of Mechanical Department, GATE Engg College, Kodad, AP, INDIA ²Assit.Prof, Department of Mechanical Department, KITS, Kammam. AP, INDIA ³Assit.Prof, Department of Mechanical Department, GATE Engg College, Kodad, AP, INDIA

Abstract:- A three-dimensional model to describe the thermal behavior of polymer matrix composites (PMCs) in fire is developed and implemented into commercial finite element package ANSYS. The model is employed to predict the temperature and the internal pressure in one-sided heating tests for glass-talc/phenolic composites and it is validated by comparing the predicted results with the measured data. The effect of porosity and permeability on the temperature and the internal pressure is examined. In addition, an experimental technique based on Vacuum Assisted Resin Transfer Molding (VARTM) is developed to manufacture PMCs with inserted hypodermic needle for internal pressure measurement. One-sided heating tests are conducted on the glass/vinyl ester composites to measure the pressure at different locations through thickness during the decomposition process. The model is explored to simulate the heating process. Both predicted and measured results indicate that the range of the internal pressure peak in the designed test is around 1.1-1.3 atmosphere pressure.

Keywords:- Polymer-matrix composites (PMCs); Finite element analysis; Resin transfer molding (RTM) & (A4) is the model number used in ansys.

I. INTRODUCTION

Polymer matrix composites (PMCs) are widely used in a number of industrial and military areas, such as bridges, wind turbine blades, industrial vessels, and submarine structures. Advantages of PMCs include their high specific strength, long fatigue life, and excellent corrosion resistance. On the other hand, there are challenging issues for PMC application, including low rigidity, poor impact resistance, high cost, and difficulties in joining. In addition, one of the continuing concerns is the fire performance of PMCs. When the composites are exposed to fire, there is thermal conduction for heat transfer inside the composites at the beginning of the heating. As the temperature increases, the polymer matrix starts to decompose and gases are generated by the decomposition reaction. A porous network in the heated composites is formed with the continuing decomposition. Some gases carrying heat flow out of the composites and affect the temperature distribution by heat convection. Others are trapped inside the pores and impede the heat conduction because of their low thermal conductivity. Meanwhile, the gases held in the solid accumulate and build up the internal pressure which may contribute to the eventual failure through processes such as delamination. A description of this internal pressure is necessary for a better understanding of thermo-mechanical behavior of composites at high temperature. In addition, the experimental measurements of this pressure are needed to validate the existing models. Some models have been developed to consider the pressure effect on thermo- mechanical response of composites in fire. Henderson et al. presented a one- dimensional transient thermal model including the combined effects of thermo-chemical expansion and storage of the decomposition gases. The model was further developed in by relaxing the assumption of local thermal equilibrium existing between the solid matrix and decomposition gases within the porous network of the composites.

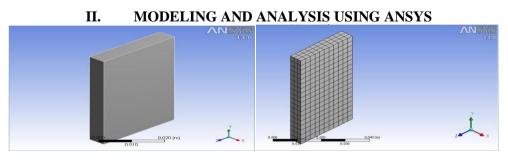


Fig.1 Generated model in ANSYS

Fig.2 Meshed model

Object Name	Temperature - Global Maximum	Temperature - Global Minimun
State	Sol	ved
	Scope	
Scoping Method	Global Maximum	Global Minimum
	Definition	
Туре	Tempe	erature
	Results	
Minimum	22.	°C
Maximum	22.	°C

...

Table.1 Global temperature results table

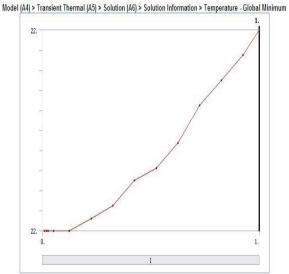


Fig.4 Global maximum temprature graph

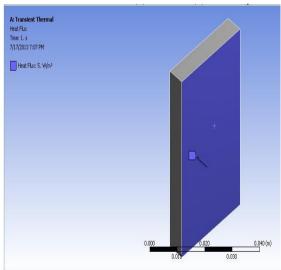
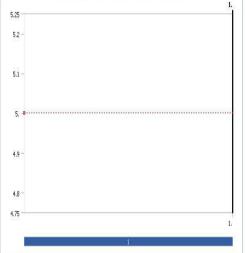
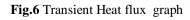




Fig.5 Transient Heat flux

		ermar (AS) > Soluti			
Object Name	Temperature	Total Heat Flux	Directional Heat Flux		
State		Solved	1		
		Scope			
Scoping Method		Geometry Se	election		
Geometry	All Bodies				
		Definition			
Туре	Temperature	Total Heat Flux	Directional Heat Flux		
By	Time				
Display Time		Last			
Calculate Time History	•	Yes			
Identifier			N)		
Orientation			X Axis		
Coordinate System			Global Coordinate System		
		Results			
Minimum	22. °C	3.1217e-004 W/m ²	-5.0275 W/m²		
Maximum	22. °C	5.0275 W/m ²	1.5993e-002 W/m ²		
	Minimum	Value Over Time			
Minimum	22. °C	1.835e-004 W/m ²	-5.0566 W/m ²		
Maximum	22. °C	8.7239e-003 W/m ²	-2.8511 W/m ²		
	Maximun	n Value Over Time			
Minimum	22. °C	2.8521 W/m ²	1.5993e-002 W/m ²		
Maximum	22. °C	5.0566 W/m ²	0.4235 W/m ²		
	lı.	nformation			
Time	1. s				
Load Step	1				
Substep	14				
Iteration Number		14			
	Integrat	ion Point Results			
Display Option	-		Averaged		
			and the second second data in the		

Study of Decomposing Polymer Matrix Composites at High...

Model (A4) > Transient Thermal (A5) > Solution (A6) > Results

Table.2 Transient thermal results

Model (A4) > Transient Thermal (A5) > Solution (A6) > Temperature	Model (A4) > Transient	Thermal (A5) > Solution	(A6) >	Temperature
---	-----------	---------------	-------------	--------------	--------	-------------

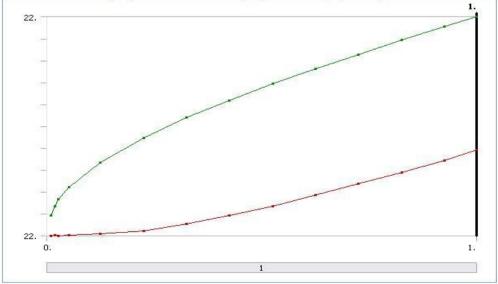


Fig.7 Transient thermal graph

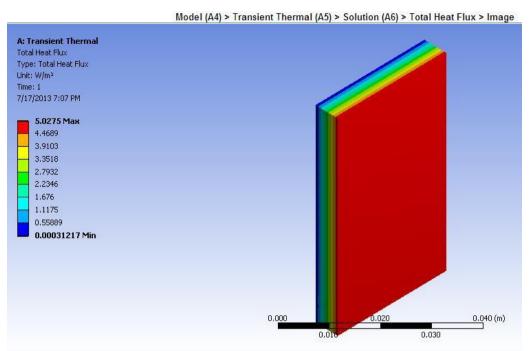
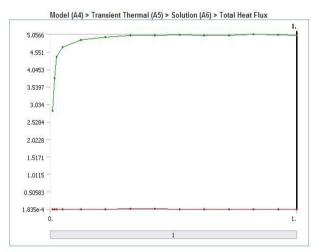



Fig.8 Transient thermal total heat flux

Model (A4) > Transient Thermal (A5) > Solution (A6) > Total Heat Flux

Time [s]	Minimum [W/m ²]	Maximum [W/m ²]
1.e-002	5.1008e-004	2.8521
1.8229e-002	5.0526e-004	3.7884
2.6459e-002	2.2137e-004	4.4035
5.1147e-002	1.835e-004	4.6762
0.12521	2.7039e-003	4.8943
0.22521	3.6273e-003	4.9714
0.32521	8.6354e-003	5.0291
0.42521	8.7239e-003	5.0292
0.52521	3.2536e-003	5.0395
0.62521	9.4071e-004	5.0288
0.72521	8.4801e-004	5.0178
0.82521	1.0917e-003	5.0566
0.92521	2.0504e-004	5.0484
1.	3.1217e-004	5.0275

Fig.9 Transient thermal total heat flux graph

Table.3 Transient thermal total heat flux results

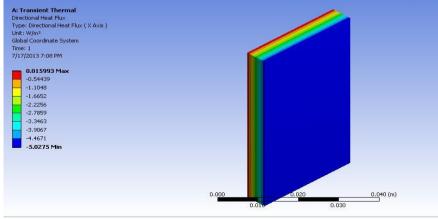
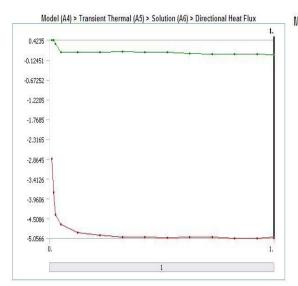



Fig.10 Directional heat flux

Study of Decomposing Polymer Matrix Composites at High...

Time [s]	Minimum [W/m ²]	Maximum [W/m ²]
1.e-002	-2.8511	0.41956
1.8229e-002	-3.7878	0.4235
2.6459e-002	-4.4032	0.32359
5.1147e-002	-4.6761	8.6421e-002
0.12521	-4.8943	8.2935e-002
0.22521	-4.9713	9.229e-002
0.32521	-5.0289	0.10555
0.42521	-5.0291	8.3812e-002
0.52521	-5.0394	8.7376e-002
0.62521	-5.0288	5.8677e-002
0.72521	-5.0178	4.1436e-002
0.82521	-5.0566	3.3788e-002
0.92521	-5.0484	2.8001e-002
1.	-5.0275	1.5993e-002

Fig.11 Directional heat flux graph

Table.4 Directional heat flux results

IV. CONCLUSION

A three-dimensional model to describe the thermal behavior of composites in fire was developed and implemented into the finite element commercial software ANSYS by user subroutine UMATHT. The model was used to simulate the one-sided heating tests conducted for glass-talc/phenolic composites by the overlaid element technique. The predicted temperatures and pressures at different locations were compared to the calculated results and measured data from and it is found they have good agreement. The effect of porosity and permeability on thermal response of composites was studied by comparing the temperature, pressure, decomposition factor, and mass flux calculated from the model using different sets of property inputs. Temperature is insensitive to permeability; however, permeability has a strong influence on pressure. The peak of pressure increases by about three times with permeability reduced by one order of magnitude. The influence of porosity on both temperature and pressure is apparent. Smaller porosity facilitates the heat transfer through composites. In order to investigate the internal pressure of glass/vinyl ester composites and overcome the leakage issue of previous experimental technique for pressure measurement, a manufacturing procedure based on VARTM was proposed and executed to make the glass/vinyl ester composite panel with inserted hypodermic needle. The one-sided heating tests for the sample with inserted needle were set up to measure the internal pressure at mid-surface and the location of one quarter thickness from the exposed surface. In addition, the three-dimensional model was employed to analyze the heating tests for glass/vinyl ester composites with measured temperatures on the exposed and unexposed surfaces as thermal boundary condition. The predicted pressures can capture the trend of the measured pressure history curves and both the measured and predicted results indicate a pressure peak in the range of 1.1-1.3 atmosphere pressure for glass/vinyl ester systems in the conducted heating tests. The good match between the predicted results and measured data for two different material systems validates the generality of the model.

REFERENCES

- Brown, J.R. and Z. Mathys, *Reinforcement and Matrix Effects on the Combustion Properties of Glass Reinforced Polymer Composites*. Composites Part A: Applied Science and Manufacturing, 1997. 28(7): p. 675-681.
- [2]. Sorathia, U., et al., *Fire Safety of Marine Composites*, in 45th International SAMPE Symposium and *Exhibition*. 2000, SAMPE, Covina, CA, United States: Long Beach, CA, USA. p. II/-.
- [3]. Lyon, R.E., et al., *Fire-Resistant Aluminosilicate Composites*. Fire and Materials, 1997. 21(2): p. 67-73.
- [4]. Sastri, S.B., J.P. Armistead, and T.M. Keller, *Phthalonitrile-Carbon Fiber Composites*. Polymer Composites, 1996. 17(6): p. 816-822.
- [5]. Sorathia, U. and C. Beck, *Fire Protection of Glass/Vinyl Ester Composites for Structural Applications*, in *41st International SAMPE Symposium and Exhibition*. 1996, SAMPE, Covina, CA, United States: Anaheim, CA, USA. p. 687-697.
- [6]. Brown, J.R., et al., *Fire-Retardant Performance of Some Surface Coatings for Naval Ship Interior Applications.* Fire and Materials, 1995. 19(3): p. 109-118.
- [7]. Ohlemiller, T., T. Cleary, and J. Shields, Effect of Ignition Conditions on Upward Flame Spread on a

Composite Material in a Corner Configuration, in 41st International SAMPE Symposium and Exhibition. 1996, SAMPE, Covina, CA, United States: Anaheim, CA, USA. p. 734-747.

- [8]. Henderson, J.B., et al., *Characterization of the High-Temperature Behaviour of a Glass-Filled Polymer Composite*. Composites, 1987. 18(3): p. 205-215.
- [9]. Henderson, J.B. and M.R. Tant, *Measurement of Thermal and Kinetic Properties of a Glass-filled Polymer Composite to High Temperatures*, in 9th EuropeanConference on Thermophysical Properties. 1986: Manchester, UK. p. 17-28.