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Abstract:- Normally decoding is  done to correct errors present in the codeword by calculating 
syndrome. syndrome calculation for large size codeword makes decoding more complex. This paper 

presents an error detection and correction schemes using Majority Logic Decoding(MLD) which 

provides simple decoding process to detect and correct errors, the existing MLD requires number of 

clock cycles equal to size of codeword to detect error but the proposed decoding significantly reduces 
the iterations by detecting error within three clock cycles for any size of codeword  using control logic 

.Also the proposed scheme uses detection logic to detect the uncorrectable codeword if error occured  

is more than actual capacity of system. Hence this makes error detection and correction schemes more 

efficient. 
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I. INTRODUCTION 
The impact of technology scaling—smaller dimensions, higher integration densities, and lower 

operating voltages— has come to a level that reliability of memories is put into jeopardy, not only in extreme 

radiation environments like spacecraft and avionics electronics, but also at normal terrestrial environments [1], 
[2]. Especially, SRAM memory failure rates are increasing significantly, therefore posing a major reliability 

concern for many applications. Some commonly used mitigation techniques are: 

• triple modular redundancy (TMR); 

• error correction codes (ECCs). 

TMR is a special case of the von Neumann method [3] consisting of three versions of the design in 

parallel, with a majority voter selecting the correct output. As the method suggests, the complexity overhead 

would be three times plus the complexity of the majority voter and thus increasing the power consumption. For 

memories, it turned out that ECC codes are the best way to mitigate memory soft errors [2]. For terrestrial 

radiation environments where there is a lowsoft error rate (SER), codes like single error correction and double 

error detection (SEC–DED), are a good solution, due to their low encoding and decoding complexity. However, 

as a consequence of augmenting integration densities, there is an increase in the number of soft errors, which 

produces the need for higher error correction capabilities [4], [5]. The usual multierror correction codes, such as 
Reed–Solomon (RS) or Bose–Chaudhuri– Hocquenghem (BCH) are not suitable for this task. The reason for 

this is that they use more sophisticated decoding algorithms, like complex algebraic (e.g., floating point 

operations or logarithms) decoders that can decode in fixed time, and simple graph decoders, that use iterative 

algorithms (e.g., belief propagation). Both are very complex and increase computational costs [6]. Among the 

ECC codes that meet the requirements of higher error correction capability and low decoding complexity, cyclic 

block codes have been identified as good candidates, due to their property of being majority logic (ML) 

decodable [7], [8]. A subgroup of the low-density parity check (LDPC) codes, which belongs to the family of 

the ML decodable codes, has been researched in [9]–[11]. In this paper, we will focus on one specific type of 

LDPC codes, namely the difference-set cyclic codes (DSCCs), which is widely used in the Japanese teletext 

system or FM multiplex broadcasting systems [12]–[14]. The main reason for using ML decoding is that it is 

very simple to implement and thus it is very practical and has low complexity. The drawback of ML decoding is 
that, for a coded word of bits, it takes cycles in the decoding process, posing a big impact on system 

performance [6]. One way of coping with this problem is to implement parallel encoders and decoders. This 

solution would enormously increase the complexity and, therefore, the power consumption. As most of the 

memory reading accesses will have no errors, the decoder is most of the time working for no reason. This has 

motivated the use of a fault detector module [11] that checks if the codeword contains an error and then triggers 

the correction mechanism accordingly. In this case, only the faulty a codewords need correction, and therefore 

the average read memory access is speeded up, at the expense of an increase in hardware cost and power 

consumption. A similar proposal has been presented in [15] for the case of flash memories. The simplest way to 
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implement fault detector for an ECC is by calculating the syndrome, but this  generally implies adding another 

very complex functional unit. This paper explores the idea of using the ML decoder circuitry as a fault detector 

so that read operations are accelerated with almost no additional. hardware cost 

 

II. EXISTING SYSTEM OVERVIEW 
MLD is based on a number of parity check equations which are orthogonal to each other, so that, at 

each iteration, each codeword bit only participates in one parity check equation, except  the very first bit which 

contributes to all equations. For this reason, the majority result of these parity check equations decide the 

correctness of the current bit under decoding. MLD was first mentioned in [7] for the Reed–Müller codes. Then, 

it was extended and generalized in [8] for all types of systematic linear block codes that can be totally 

orthogonalized on each codeword bit. Initially, the data words are encoded  and then stored in the memory. 

When the memory is read, codeword is then fed through the ML decoder before sent to the output for further 

processing. In this decoding process, the data word is corrected from all bit-flips that it might have suffered 

while being stored in the memory. 

There are two ways for implementing this type of decoder. The first one is called the Type-I ML 

decoder, which determines, upon XOR combinations of the syndrome, which bits need to be corrected [6]. The 
second one is the Type-II ML decoder that calculates directly out of the codeword bits the information of 

correctness of the current bit under decoding [6]. Both are quite similar but when it comes to implementation, 

the Type-II uses less area, as it does not calculate the syndrome as an intermediate step. Therefore, this paper 

focuses only on this one. 

Codes exist which are capable of correcting large number of random errors. Such codes are rarely used 

in practical data transmission systems ,however, because the equipments necessary to realize their capabilities, 

that is to actually correct the errors, is usually prohibited complex and expensive. The problem of finding simply 

implemented decoding algorithm is perhaps the outstanding unsolved problem today.     Here a new class of 

random error correcting cyclic codes such as majority logic algorithm is defined. These codes can be decoded 

with the simplest  decoding algorithm . 

As VLSI Technology scaling continues and the device dimensions keep shrinking, memories are more 
and more sensitive to soft errors. Memory cores have significant impact on chip reliability therefore error 

detection and correction techniques are commonly used for protecting the system against soft errors. 

 

 
Fig 1 Schematic of Existing  MLD 

 

III. PLAIN MLD 
As described before, the ML decoder is a simple and powerful decoder, capable of correcting multiple 

random bit-flips depending on the number of parity check equations. It consists of four parts: 1) a cyclic shift 

register; 2) an XOR matrix; 3) a majority gate; and 4) an XOR for correcting the codeword bit under decoding, 

as illustrated in Fig. 1. The input signal is initially stored into the cyclic shift register and shifted through all the 

taps. The intermediate values in  each tap are then used to calculate the results of the check sum equations from 

the XOR matrix. In the cycle, the result has reached the final tap, producing the output signal (which is the 
decoded version of input ). 

 

As stated before, input might correspond to wrong data corrupted by a soft error. To handle this 

situation, the decoder would behave as follows. After the initial step, in which the codeword is loaded into the 

cyclic shift register, the decoding starts by calculating the parity check equations hardwired in the XOR matrix. 

The resulting sums are then forwarded to the majority gate for evaluating its correctness. If the number of 1’s 
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received in is greater than the number of 0’s, that would mean that the current bit under decoding is wrong, and 

a signal to correct it would be triggered. Otherwise, the bit under decoding would be correct and no extra 

operations would be  needed on it. In the next step, the content of the registers are rotated and the above 

procedure is repeated until all codeword bits have been processed. Finally, the parity check sums should be zero 

if the codeword has been correctly decoded. 

The previous algorithm needs as many cycles as the number of bits in the input signal, which is also the 

number of taps in the decoder. This is a big impact on the performance of the system, depending on the size of 
the code. For example, for a codeword of 73 bits, the decoding would take 73 cycles, which would be excessive 

for most applications. 

 

3.1 Plain MLD with syndrome fault detector 

In order to improve the decoder performance, alternative designs may be used. One possibility is to add 

a fault detector by calculating the syndrome, so that only faulty codewords are decoded [11]. Since most of the 

codewords will be error-free, no further correction will be needed, and therefore performance will not be 

affected. Although the implementation of an SFD reduces the average latency of the decoding process, it also 

adds complexity to the design. 

The SFD is an XOR matrix that calculates the syndrome based on the parity check matrix. Each parity 

bit results in a syndrome equation. Therefore, the complexity of the syndrome calculator increases with the size 
of the code.A faulty codeword is detected when at least one of the syndrome bits is ―1.‖ This triggers the MLD 

to start the decoding, as explained before. On the other hand, if the codeword is error-free, it is forwarded 

directly to the output, thus saving the correction cycles. 

In this way, the performance is improved in exchange of an additional module in the memory system: a 

matrix of XOR gates to resolve the parity check matrix, where each check bit results into a syndrome equation. 

This finally results in a quite complex module, with a large amount of additional hardware and power 

consumption in the system. 

 

IV. PROPOSED SYSTEM 

This section presents a modified version of the ML decoder that improves the designs presented before. 

Starting from the original design of the ML decoder introduced in [8], the proposed ML detector/decoder 

(MLDD) has been implemented using the difference-set cyclic codes (DSCCs) [16]–[19]. This code is part of 

the LDPC codes, and, based on their attributes, they have the following properties: 

• Ability to correct large number of errors, sparse encoding, decoding and checking circuits synthesizable   into       

simple hardware; 

• modular encoder and decoder blocks that allow an efficient   hardware implementation; 

• systematic code structure for clean partition of information and code bits in the memory.  

 Given a word read from a memory protected with DSCC codes, and affected by up to four bit-flips, all 

errors   can be detected in only three decoding cycles. This is a huge improvement over the simpler case, where 

N  decoding cycles are needed to guarantee that errors are detected. 

The figure1 shows the basic ML decoder with an -tap shift register, an XOR array to calculate the 
orthogonal parity check sums and a majority gate for deciding if the current bit under decoding needs to be 

inverted. Those components are the same as the ones for the plain ML decoder . The additional hardware to 

perform the error detection is illustrated in Fig. 2 as: i) the control unit which triggers a finish flag when no 

errors are detected after the third cycle and ii) the output tristate buffers. The output tristate buffers are always in 

high impedance unless the control unit sends the finish signal so that the current values of the shift register are 

forwarded to the output . 

 

4.1 Control and Detection logic 

The control unit manages the detection process. It uses a counter that counts up to three, which distinguishes the 

first three iterations of the ML decoding. In these first three iterations, the control unit evaluates the by 

combining them with the OR1 function. This value is fed into a three-stage shift register, which holds the results 
of the last three cycles. In the third cycle, the OR2 gate evaluates the content of the detection register. When the 

result is ―0,‖ the FSM sends out the finish signal indicating that the processed word is error-free. In the other 

case, if the result is ―1,‖ the ML decoding process runs until the end. 

 

This clearly provides a performance improvement respect to the traditional method. Most of the words 

would only take three cycles (four, if we consider the other two for input/output) and only those with errors 

(which should be a minority) would need to perform the whole decoding process.  
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The detection logic provides the information about whether codeword is correctable or not .consider 

that system is able to detect up to four bits but codeword contains six bit error means detection logic produces 

output as uncorrectable codeword, suppose the codeword contains four or less number of bits means it produces 

output as correctable codeword .This makes the error detection schemes more efficient than existing decoding 

process.  

 An error-correcting code (ECC) or forward error correction (FEC) code is a system of adding 

redundant data, or parity data, to a message, such that it can be recovered by a receiver even when a number of 
errors (up to the capability of the code being used) were introduced, either during the process of transmission, or 

on storage. Since the receiver does not have to ask the sender for retransmission of the data, a back-channel is 

not required in forward error correction, and it is therefore suitable for simplex communication such as 

broadcasting. Error-correcting codes are frequently used in lower-layer communication, as well as for reliable 

storage in media such as CDs, DVDs, hard disks, and RAM. 

 
Fig 2 .Proposed MLD scheme 

 

V. SIMULATIONS USING MODELSIM 
ModelSim is a powerful simulator that can be used to simulate the behavior and performance of logic 

circuits. The simulator allows the user to apply inputs to the designed circuit, usually referred to as test vectors, 

and to observe the outputs generated in response. The user can use the Waveform Editor to represent the input 

signals as waveforms. 

 ModelSim is a simulation and debugging environment created by Mentor Graphics. ModelSim allows 

you to check the syntax and verify the functionality of VHDL programs. 

 ModelSim VHDL supports both the IEEE 1076-1987 and 1076-1993 VHDL, the 1164-1993 Standard 

Multivalue Logic System for VHDL Interoperability, and the 1076.2-1996 Standard VHDL Mathematical 
Packages standards. Any design developed with ModelSim will be compatible with any other VHDL system 

that is compliant with either IEEE Standard 1076-1987 or 1076-1993. 

ModelSim Verilog is based on IEEE Std 1364-1995 and a partial implementation of 1364-2001 (see 

/<install_dir>/modeltech/docs/technotes/vlog_2001.note for implementation details) Standard Hardware 

Description Language. The Open Verilog International Verilog LRM version 2.0 is also applicable to a large 

extent. Both PLI (Programming Language Interface) and VCD (Value Change Dump) are supported for 

ModelSim PE and SE users. 

 

5.1. Simulation Result and Analysis 

 
    Fig 3 Simulation result of existing MLD 

Simulation results of existing MLD  shows that the detection of error takes number of cycles equal to size of 
codeword even if there is no error in the data .This leads to large area and power consumption and results in 

complexity of decoding process . The codeword of size 73 contains no error but the existing MLD takes 73 

iterations to detect the error   so that efficiency of decoding process is reduced in this scheme. 
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Fig 4  Result of  Control Logic 

The above simulation result shows that  proposed MLD in which the error is detected within three 

cycles .This significantly reduces area and power consumption of the system. The Error free codeword size is 73 

but proposed MLD takes only three iterations to detect error in all 73 bits. The control logic sends finish signal 

if there is no error in the data after three iterations .Hence proposed MLD has better decoding process than 

existing MLD. 

 

 
Fig 5 Result of  Detection logic 

 

The above simulation result shows that proposed MLD with Detection logic which displays result as 

uncorrectable codeword because the system is able to detect up to 4 bits only but the codeword contains six bit 

errors Hence detection logic display produces this output after completion of entire clock cycles 
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