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Abstract:- Classification is one of the most researched questions in data mining. A wide range of real 
problems have been stated as classification problems, for example credit scoring, bankruptcy 

prediction, medical diagnosis, pattern recognition, text categorization, software quality assessment, and 

many more. The use of evolutionary algorithms for training classifiers has been studied in the past few 

decades. Genetic programming is a technique to automatically discover computer programs using 

principles of evolution. Genetic operations like crossover, mutation, reproduction are carried out on 
population to get the best fitting results. In this GP is used for developing a classification model for a 

data set and also used for function generation to study its automatic code generation capability. 
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I. INTRODUCTION 

Classification is the data mining problem of attempting to predict the category of categorical, numerical 

or mixed data by building a model based on some predictor variables. Classification is much easier to 

understand. First, we define a set of groups by their characteristics. Then we analyze each case and put it into 

the group it belongs. Classification can be used to understand the existing data and to predict how new instances 

will behave. For example, we can make a classification model for a Haberman’s survival data to find out hidden 

patterns and predictions. First we define two patient groups: one is for the patients who survive for 5years or 
longer; the other group is the patients who will die within 5 years[1-5]. 

The genetic algorithm is a probabilistic search algorithm that iteratively transforms a set (called a population) of 

mathematical objects (typically fixed-length binary character strings), each with an associated fitness value, into 

a new population of offspring objects using the Darwinian principle of natural selection and using operations 

that are patterned after naturally occurring genetic operations, such as crossover (sexual recombination) and 

mutation[1-5]. 

Genetic programming (GP) is a branch of genetic algorithms. GP applies the approach of the genetic 

algorithm to the space of possible computer programs. GP is a technique to automatically discover computer 

programs using principles of Darwinian evolution. In this thesis GP is used as a problem-solving tool for solving 

few mathematical equations, further it used as classifier. It is a systematic method for getting computers to 

automatically solve a problem starting from a high-level statement of what needs to be done. IT is a domain-

independent method that genetically breeds a population of computer programs to solve a problem. It iteratively 
transforms a population of computer programs into a new generation of programs by applying analogs of 

naturally occurring genetic operations[1-5]. 

The present work is mainly concentrated on data classification using genetic programming, which gives a 

mathematical model to classify a two class modeled data to produce nearest genetic programming classifier 

expression, which gives a best data classification percentage. 

 

A. Scope of Study 

•Study about Genetic programming and Genetic Algorithm. 

•Study Genetic Algorithm for generating a polynomial equivalent to the given polynomial. 

•Study about the Classification problem of Data Mining. 

•Study how we can use Genetic Programming for solving the Classification problem. 
•Select any data set on which the GP has to be applied. 

 

B. Objectives of the Study 

•The purpose of the software is to classify a data set.  

•This is done by using Genetic programming technique to data classification which produces nearest GPCE. 
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II. BACKGROUND INFORMATION  
A. Classification 

Data classification is the categorization of data for its most effective and efficient use. In a basic approach 

to storing computer data, data can be classified according to its critical value or how often it needs to be 
accessed, with the most critical or often-used data stored on the fastest media while other data can be stored on 

slower (and less expensive) media[6-13]. Classification Examples 

 Classifying credit card transactions as legitimate or fraudulent. 

 Classifying secondary structures of protein as alpha-helix, beta-sheet, or random coil. 

  Categorizing news stories as finance, weather, entertainment, sports, etc. 

B. Classification Methods 

 Decision Tree Induction 

 Neural Networks 

 Bayesian Classification 

 Association-based Classification 

 K-Nearest Neighbor 

 Case-Based Reasoning 

 Genetic Algorithms 

 Fuzzy Sets 

i. Bayesian Classification 

Is based on the so-called Bayesian theorem and is particularly suited when the dimensionality of the inputs is high 

[14]. 

 
Fig 1 Distribution of two different colored objects to explain Bayesian Classification 

 

The objects can be classified as either GREEN or RED shown in Fig 1. Our task is to classify new 

cases as they arrive, i.e., decide to which class label they belong, based on the currently existing objects. Since 

there are twice as many GREEN objects as RED, it is reasonable to believe that a new case (which hasn’t been 
observed yet) is twice as likely to have membership GREEN rather than RED[6-14]. 

In the Bayesian analysis, this belief is known as the prior probability. Prior probabilities are based on previous 

experience, in this case the percentage of GREEN and RED objects, and often used to predict outcomes before 

they actually happen. 

Prior Probability for GREEN         ∞           Number of GREEN objects 

                                                                         Total number of objects 

Prior Probability for RED              ∞          Number of RED objects 

                                                                    Total number of objects 

Likelihood of X given GREEN    ∞          40/60 

Likelihood of X given   RED       ∞          20/60 

 

ii. Decision Tree Induction 
A decision tree is a flow chart like structure in which the internal nodes represent tests on an attribute, 

each branch represents the outcome of the test, and each leaf node represents a class label. The attribute with the 

maximum value of information gain is selected as the root node. Decision tree generation consists of two 

phases[6-14]. 

Tree construction: 

 At start, all the training examples are at the root. 

 Partition examples recursively based on selected attributes. 

         Tree pruning: 

 Identify and remove branches that reflect noise or outliers. 

 Use of decision tree: Classifying an unknown sample. 

 Test the attribute values of the sample against the decision tree. 
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iii. Neural Networks 

Neural networks are a form of multiprocessor computer system, with  

 Simple processing elements  

 A high degree of interconnection  

 Simple scalar messages  

 Adaptive interaction between elements  
A typical neural network  is composed of input units X1, X2, ... corresponding to independent variables (in our 

case, highway or intersection variables), a hidden layer known as the first layer, and an output layer (second 

layer) whose output units Y1, ... correspond to dependent variables (expected number of accidents per time 

period). In between are hidden units H1, H2, ... corresponding to intermediate variables. These interact by means 

of weight matrices W(1) and W(2) with adjustable weights [6-14] 

 

III. GENETIC ALGORITHM AND PROGRAMMING 

Genetic Programming is a technique to automatically discover computer programs using principles of 

Darwinian evolution. In this thesis GP is used as a problem-solving tool for solving few mathematical equations, 
further it used as classifier. Genetic Programming (GP) is a systematic method for getting computers to 

automatically solve a problem starting from a high-level statement of what needs to be done[15-22].  

 
Fig 2 Flow chart of Genetic Algorithm 

 
IT is a domain-independent method that genetically breeds a population of computer programs to solve 

a problem. It iteratively transforms a population of computer programs into a new generation of programs by 

applying analogs of naturally occurring genetic operations. 

 

A. Genetic Algorithm 

The genetic algorithm is a probabilistic search algorithm that iteratively transforms a set (called a 

population) of mathematical objects (typically fixed-length binary character strings), each with an associated 

fitness value, into a new population of offspring objects using the Darwinian principle of natural selection and 

using operations that are patterned after naturally occurring genetic operations, such as crossover (sexual 

recombination) and mutation[15-23]. 

 
i. Description: A typical genetic algorithm requires two things to be defined: 

 A genetic representation of the solution domain. 

 A fitness function to evaluate the solution domain. 

Once we have the genetic representation and the fitness function defined, GA proceeds to initialize a population 

of solutions randomly, then improve it through repetitive application of mutation, crossover, inversion and 

selection operators [15-24]. 

 

ii. Initialization 

Initially many individual solutions are randomly generated to form an initial population. The population size 

depends on the nature of the problem, but typically contains several hundreds or thousands of possible solutions. 

Traditionally, the population is generated randomly, covering the entire range of possible solutions (the search 

http://en.wikipedia.org/wiki/Genetic_representation
http://en.wikipedia.org/wiki/Domain
http://en.wikipedia.org/wiki/Fitness_function
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space). Occasionally, the solutions may be "seeded" in areas where optimal solutions are likely to be found[15-

24]. 

 

iii. Selection 

During each successive generation, a proportion of the existing population is selected to breed a new 

generation. Individual solutions are selected through a fitness-based process, where fitter solutions (as measured 

by a fitness function) are typically more likely to be selected. Certain selection methods rate the fitness of each 
solution and preferentially select the best solutions. Other methods rate only a random sample of the population, 

as this process may be very time-consuming. 

Most functions are stochastic and designed so that a small proportion of less fit solutions are selected. This helps 

keep the diversity of the population large, preventing premature convergence on poor solutions. Popular and 

well-studied selection methods include roulette wheel selection and tournament selection[15-24]. 

 

iv. Reproduction 

The next step is to generate a second generation population of solutions from those selected through 

genetic operators: crossover (also called recombination), and/or mutation. For each new solution to be produced, 

a pair of "parent" solutions is selected for breeding from the pool selected previously. By producing a "child" 

solution using the above methods of crossover and mutation, a new solution is created which typically shares 
many of the characteristics of its "parents". New parents are selected for each child, and the process continues 

until a new population of solutions of appropriate size is generated [15-24]. 

These processes ultimately result in the next generation population of chromosomes that is different from the 

initial generation. Generally the average fitness will have increased by this procedure for the population, since 

only the best organisms from the first generation are selected for breeding, along with a small proportion of less 

fit solutions, for reasons already mentioned above. 

 

v. Termination 

This generational process is repeated until a termination condition has been reached. Common 

terminating conditions are 

 A solution is found that satisfies minimum criteria 

 Fixed number of generations reached 

 Allocated budget (computation time/money) reached 

 The highest ranking solution's fitness is reaching or has reached a plateau such that successive  

   iterations no longer produce better results 

 Manual inspection 

 Combinations of the above 

 

vi. Applications of Genetic Algorithm 

 Distributed computer network topologies. 

 Code-breaking, using the GA to search large solution spaces of ciphers for the one    correct      

decryption. 

 File allocation for a distributed system. 

 Finding hardware bugs. 

 Software engineering 

 Learning Robot behavior using Genetic Algorithms 

 

B. Genetic Programming  

Genetic programming is a branch of genetic algorithms. GP applies the approach of the genetic 

algorithm to the space of possible computer programs. The main difference between genetic programming and 

genetic algorithms is the representation of the solution. Genetic programming creates computer programs in the 

lisp or scheme computer languages as the solution. Genetic algorithms create a string of numbers that represent 

the solution[15-24].  Compared with genetic algorithms (GAs), GP has the following characteristics:  

 While the standard genetic algorithms (GAs) use strings to represent solutions, the forms evolved by 

genetic programming are tree-like computer programs. The standard GA bit strings use a fixed length 

representation while the GP tree-like programs can vary in length.  

 While the GAs use a binary alphabet to form the bit strings, the GP uses alphabets of various sizes and 

content depending on the problem domain. These trees are made up of internal nodes and leaf nodes, which 

have been drawn from a set of primitive elements that are specific to the problem domain.  

http://en.wikipedia.org/wiki/Selection_%28genetic_algorithm%29
http://en.wikipedia.org/wiki/Fitness_%28biology%29
http://en.wikipedia.org/wiki/Fitness_function
http://en.wikipedia.org/wiki/Stochastic
http://en.wikipedia.org/wiki/Fitness_proportionate_selection
http://en.wikipedia.org/wiki/Tournament_selection
http://en.wikipedia.org/wiki/Genetic_operator
http://en.wikipedia.org/wiki/Crossover_%28genetic_algorithm%29
http://en.wikipedia.org/wiki/Mutation_%28genetic_algorithm%29
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 While GAs need a very complex encoding and decoding process, GP eliminates this process     by directly 

using terminals and functions and accordingly GP is easier to    use.  

       The term genetic programming comes from the notion that computer programs can be represented by a tree-

structured genome. Computer programming languages, such as Lisp, can be represented by formal 

grammars which are tree based, thus it is actually relatively straight forward to represent program code 

directly as trees. These trees are randomly constructed from a set of primitive functions and terminals[15-

24].  
 

i. Why Genetic Programming is used 

 No analytical knowledge is needed and we can still get accurate results.  

 Every component of the resulting GP rule-base is relevant in some way for the solution of the problem. 

Thus we do not encode null operations that will expend computational resources at runtime.  

 This approach does scale with the problem size. Some other approaches to the cart centering problem use a 

GA that encodes NxN matrices of parameters. These solutions work bad as the problem grows in size (i.e. 

as N increases).  

 With GP we do not impose restrictions on how the structure of solutions should be. Also we do not bind the 

complexity or the number of rules of the computed solution. 

 

ii. Main Loop of Genetic Programming 
 

 
Fig 3 Main loop of genetic programming 

 

Genetic programming starts by creating a random population of syntactic trees. A new generation or 

population is evolved from this initial random population[15-24]. The members of the new population (or 

generation) are the members of the initial population that satisfied the fitness of the problem in question. After 

selection, the genetic operations are implemented on the new population which gives rise to another new 

population. Again fitness criteria are applied on the new population and genetic operations will be applied on 

those that have satisfied the fitness. This is an iterative process which is performed until the desired solution is 
obtained. Figure 3 shows the idea. 

 

iii. Uses of Genetic Programming 

 GP-based techniques are distribution free, i.e  no prior knowledge is needed about statistical distribution of    
  data. 

 Expresses relation between the attributes mathematically. 

 Automatic code generator. 

 The source code for one classification problem can be easily mapped for another    problem. 
 

IV. CASE STUDY 
i. Fitness Measure 

GP is guided by the fitness function to search for the most efficient computer program to solve a given 

problem. A simple measure of fitness has been adopted for the pattern classification problem. 

Fitness     =              Number of samples classified correctly 

Number of samples used for training during evolution 
 

ii. Creation of Training Sets 
In a two-class problem, the pattern classification is between two classes only, and so both the classes 

typically have an equal number of samples, and only one GPCE is needed. As the n-class problem has been 

converted into n two-class problems, n GPCEs are evolved, and so GPCE specific training sets are needed. In 

each GPCE specific training set, the number of samples belonging to one class (whose desired output is 1) is 

outnumbered by the samples belonging to all other classes (whose desired output is -1). For example, in a five-

class problem, let the number of samples belonging to each class be 100. Thus, in our formulation, the training 

set for class 1, the desired output will be 1 for 100 samples and will be -1 for 400 samples [25]. Although it is a 
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valid training set for a two-class problem, still it results in a highly skewed training set as there are more 

representative samples for one category than for the other. Our experimental results show that this skew ness 

leads to misclassification of input feature vectors. To overcome the skew ness, one possible option is to use a 

subset of the data belonging to other classes (whose desired output is -1), so that the number of samples 

belonging to a class will be the same as the number of samples belonging to other classes. Although a balanced 

training set is created in this manner, it will lead to poor learning as the data for the other classes are not 

representative. The training set should be as representative as possible for proper learning of underlying data 
relationships. So, an interleaved data format for the training set is used to evaluate the fitness function. 

 

iii. Interleaved Data Format  

In the interleaved data format, the samples belonging to the true class are alternately placed between 

samples belonging to other classes, i.e., they are repeated. The table below illustrates the format of the training 

set for class 1 in a five-class problem. The desired output of the GPCE is 1 for the samples of the true-class, and 

is -1 for the other classes [25]. The number of samples in the training set is increased, and hence the time taken 

for evaluating fitness also increases. The training time is proportional to the size of the training set. Hence, the 

training time for evolving the GPCE of class 1 with the skewed data set is proportional to n1+N1, and for the 

interleaved data format, it is proportional to (n-1)n1+N1. Interleaved data format training set of GPCE-1 in a five-

class problem 
Class#1,  n1(+1),  n2(-1),  n1(+1),  n3(-1),  n1(+1),  n4 (-1), n1 (+1), 5 (-1) 

iv. Data Set Description for Data Classification  

Haberman’s Survival Data Set 

In this thesis, GP is applied to Haberman’s survival data set. Dataset contains cases from study 

conducted on the survival of patients who had undergone surgery for breast cancer [8] [9]. 

 

 
Table 1 Haberman`s Survival Data Set 

v. Data Set Information: 

The dataset contains cases from a study that was conducted between 1958 and 1970 at the University of 

Chicago's Billings Hospital on the survival of patients who had undergone surgery for breast cancer. 

vi. Attribute Information: 

 Age of patient at time of operation (numerical)  

 Patient's year of operation (year - 1900, numerical) 

 Number of positive auxiliary nodes detected (numerical)  

 Survival status (class attribute)  

 1 = The patient survived 5 years or longer 

 2 = The patient died within 5 year. 

 

 
Table 2 Sample Data from data set 

 

V. CONCLUSION AND FUTURE SCOPE 
This paper presents a survey of GP for classification. We begin by providing a brief analysis of the two 

areas concerned: GP and classification. This provides us with the background context needed to understand the 
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works reviewed, and serves as a guideline to categorize and sort relevant literature. In this study we classify the 

data for the Haberman’s data set. In this we consider single category classification; This can be enhanced further 

for Multi category classification problems as a class problem should be solved as n-two class problems 
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