
International Journal of Engineering Research and Development 

e-ISSN: 2278-067X, p-ISSN : 2278-800X, www.ijerd.com 

Volume 5, Issue 8 (January 2013), PP. 40-44 

40 

An Optimal Replacement Problem for Three–State 

Repairable Systems Using Arithmetico-Geometric Process 

Dr.C.Manmatheswara reddy
1
, Dr.B.Venkata Ramudu

2
 

1
Principal, Sri Balaji P.G.Collge, Anantapur-515001.A.P (India) 

2
Assistant Professor, Dept. of Statistics, S.S.B.N Degree & P.G. College, 

Anantapur-515001.A.P (India) 

 

 

Abstract:- This paper demonstrates a Deteriorating Simple Repairable System with three states. They 

include two failure states and one working state. Assuming that the up times and down times are 

exposing to Arithmetico Geometric Process an attempt is made to obtain replacement policy N under 

which we replace the system when  the number failures of the system reaches N.  An explicit 

expression of the average cost rate is derived and corresponding optimal policy N* is obtained. Finally 

it provides numerical results.  

 

I. INTRODUCTION 
The replacement problem for a repairable system has aroused great attention since it was proposed by 

Lotka in 1939[6].  The field of maintenance (including inspection, replacement, condition-based, over haul) 

models was founded in the 1960s with the pioneering work of Barlow and Proschan[2], among others.  This 

period is characterized by relatively simple, but lucid models.  In the 1970s and early 1980s, researchers built on 

these models, and considered many extensions.  The results of these more complicated models were mainly 

analytical and, except for some special cases, which yielded on explicit mathematical solution, the solutions 

obtained were computationally intractable.  Then, after a few quiet years, renewed interest in maintenance 

emerged in the mid 1980s.  Apart from further extensions, such as multi-component systems and interaction 

with production, more attention has been paid to computational tractability and practical usefulness.  The results 

of models are often accompanied by numerical examples, algorithms and computer programs.  Further advances 

in computer science and information technology support this development.  

The earliest replacement models consider one component repairable systems with one repairman 

(called simple repairable systems).  It is assumed that the system after repair is     „ as good as new ‟  and this 

kind of repair is called a perfect repair.  The replacement of a piece of equipment with a new one can be 

considered to be a perfect repair.  However, almost repairs in practice are not perfect. consequently, the system 

after repair cannot be  „ as good as new ‟.  Barlow and Hunter[1] introduced a minimal repair model in which 

the repair activities do not change the failure rate of the system. There after Brown and Proschan[3] considered 

the imperfect repair model, which is the combination of the perfect repair and minimal repair models. 

Consider a machine which operates for random amount of time before being repaired and then operates 

again until the next repair is required, continuing to alternative between periods of operation and repair.  Under 

many circumstances, the times between repair (uptimes) would seem to most appropriately be modeled as a 

stochastically decreasing sequence of random variables (e.g.. Ross[7]).  Since the machine may not always be 

repaired as good as new. For similar reasons the sequence of periods during which the machine being repaired 

(down times) may best be modeled as a stochastically increasing sequence of random variables.   

In practice, because of the ageing effect and accumulated wearing, most systems are deteriorating so that the 

successive operating times are stochastically decreasing, while the consecutive operating times are stochastically 

increasing.  It seems reasonable that an alternative approach to the maintenance problem of a deteriorating 

system is to study a monotone process model. For this purpose Lam [4] introduced the geometric process. 

In most reported repair/replacement models including the geometric process repair model, it is usually 

assumed that a system may experience only two possible states. One working state and the other failure state.  In 

practice, a system may have more than two states, for example both a relay, and a diode have a short circuit 

failure, and an open circuit failure some equipment or man – machine systems, such as those in the chemical 

industry, nuclear power stations, and soon, have a safety failure and a danger failure, or a slight failure and a 

serious failure, or some similar combination.  A radio or microwave transmitter may be working with full 

transmission range, working with degraded transmission range, or completely failed.  The health condition of an 

automobile may be considered excellent, good or poor.  A review of research on systems with dual failure 

model is provided by Lesanovsky[5].  In these situations, a repair model for three – state repairable system in 

this chapter is more appropriate. 
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Zhang [8] studied a deteriorating simple repairable system with three states, including two failure states 

and one working state.  Assume that the system after repair cannot be „as good as new‟, and the deterioration of 

the system is stochastic. A replacement policy N based on the failure number of the system is adopted under 

which the system will be replaced at the time of N
th

 failure.  He also derived an explicit expression for an 

optimal replacement policy N* by minimizing the average cost rate. 

 In many practical situations, a system may experience many possible states.  For example, a relay 

circuit may experience two different failure modes, called dual failure modes, in addition to the working mode.  

When it is energized and thus required to close, it may fail to do so due to the presence of dust and other 

insulating media.  When it is de-energized and thus required to open, it may fail to do so because the contacts 

are stuck together due to overheating. A flow control chart valve may also experience such dual failure modes.  

Another example is home security system.  It may fail to detect a break-in due to mechanical or electrical circuit 

failures.  It may also create a false alarm due to the presence of a pet.  Systems with dual failure modes are 

studied.    

In the next section, we develop the model and optimal solution for a deteriorating repairable system 

with three states and (K+1) states.  Among these states, K of them are failure states and the other one is failure 

state with exposing to arithmetico- geometric process. 

For case of reference, we provided the definitions of stochastic ordering and arithmetico- geometric process as 

follows.(see Lam[4]). 

 

1 Definition  

 Given two random variables X and Y  

if p(x > )  p(y>) for all real ,  

then we say that X is stochastically larger than Y and written X stY or Y is stochastically less than X and 

written Y  st X. 

 We say that a sequence of random variables {Zn, n=1, 2,…} is stochastically decreasing if Zn  st Zn+1 

for all n=1,2,….; similarly, we say that a sequence of random variables {Zn, n=1, 2,3,………} is stochastically 

increasing if Zn  st Zn+1 for all n=1,2,…… 

 Now, we give the definition of the arithmetico -geometric process(AGP).  

 

2 Definition : 

 If a>1 and d  (0,  / (n-1)a
n-1

), where n=2,3,…….. and  is the mean of the first random variable H1, 

then the AGP is called a decreasing AGP. If d<0 and 0<a<1, then the AGP is called as increasing AGP. If d=0 

and a=1, then the AGP reduces to a Renewal process.   

 

II. MODEL 
 In this section, we develop a model for three states and (K+1) states of the systems exposing to 

arithmetico -geometric process by maximizing the long-run expected reward per unit time with the following 

assumptions. 

 

Assumptions:  

1. At time o, a new system is installed, this system will eventually be replaced by a new and identical one. 

2. (i) The system may experience three states including one working state and two failure states.  State 0 

represents the working state and state 1 and 2 represents the failure states of the system.   

(ii) The system may experience (K+1) different states including one working state and K different failure 

states.  State 0 represents the working state while state i (for 1< i<K) represents the i
th

 type of failure state 

of the system.  

These failure states are exhaustive, mutually exclusive and stochastic. 

3. Whenever the system was failed, a repairman starts to repair it right away. The system after repair is not 

as good as new. Let us denote Xn and Yn to represent the consecutive working time after the (n-1)
th
 

repair, the repair time after the n
th 

failure respectively.  

4. Assume that Xn, Yn ; n = 1,2,…. are independent random variables.   

5. (i) We denote Cr, Cw, C to represent respectively, the repair cost of the system per unit time, working 

reward of the system  per unit time and replacement cost of the system. 

(ii) Let r be the reward rate of the system when it is operating, and let C be the repair cost rate of the 

system.  Assume further that the replacement cost comprises two parts. One part is the basic replacement 

cost R, the other is proportional to the replacement time Z at rate Cp. 
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III. OPTIMAL SOLUTIONS 
 We use replacement policy N based on the failure number of the system.  Our aim is to determine an 

optimal replacement policy N* such that the average cost rate is minimum.  Let T1 be the first replacement time 

of the system under policy N.  Let  n  (n2) be the time between the (n-1)
Th 

 replacement, and the n
Th

  

replacement of the system under policy N.  Obviously { T1, T2, ….}  forms a renewal process, while the inter 

arrival time between two consecutive replacements is called renewal cycle. 

 Let C(N) be the long-run expected reward per unit time under policy N.  Thus, according to the renewal 

reward theorem(Ross), we have:    

cycle renewal  theoflength  expected The

    

cycle renewal ain  incurredcost  expected The

)( NC                     (3.1) 
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 Now, we say a cycle is completed if a replacement is completed. In other words, a cycle is actually a 

time interval between the installation and the first replacement or two successive replacements. Thus the 

successive cycles and the costs incurred in each cycle will form a renewal reward process. By applying the 

standard result in renewal reward process, the long-run average cost per unit time (or simply average cost) is 

given by: 

                  
cycle renewal  theoflength  expected The

    

cycle renewal ain  incurredcost  expected The
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Where r = E(Z) is the expected replacement time. 
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 Obviously, we can determine the optimal replacement policy N* by analytical or empirical methods 

such that C(N*) is minimized.   

 

IV. EMPIRICAL RESULTS AND CONCLUSIONS 
For given fixed values of , , C, Cr, Cw the optimal replacement policy N* is calculated as follows: 

Let a=0.85, b=0.8, d1=1.05,d2=-0.9,  = 50, =70, C=5000, Cr=20, Cw=250 

 

Table 1 : N Vs C(N) 

                                                  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N C(N) N C(N) 

2 297330.718750 13 25638.978516 

3 305209.250000 14 19773.625000 

4 284539.406250 15 15364.040039 

5 241149.187500 16 12015.141602 

6 190165.375000 17 9448.106445 

7 143803.171875 18 7464.026367 

8 106829.929688 19 5919.299316 

9 79141.687500 20 4708.994629 

10 58922.847656 21 3755.533936 

11 44237.757812 22 3000.923096 

12 33524.457031 23 2401.357666 

13 25638.978516 24 1923.437744 
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Graph:1 

 
 

V. CONCLUSIONS 
(i)  From the table and graph (1), it can observed that the expected long-run average cost is minimum at the 

3
rd

 failure..Thus N*=3.That is, the system should be replaced at the time of third failure. 

(ii) It was observed that the optimal number of failure N* is positively changes as the values of „b‟ changes.  

(iii) It was observed that the optimal number of failure N* is positively changes as the values of „a‟ changes.  

(iv) This system can also be modeled as an improving system by an appropriate changes in the values of „a‟ & 

„b‟. 
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