
International Journal of Engineering Research and Development 

e-ISSN: 2278-067X, p-ISSN : 2278-800X, www.ijerd.com 

Volume 5, Issue 5 (December 2012), PP. 08-18 

8 

A Novel Test Data Compression Algorithm 

Ms.K.Hemalatha
1
, Ms R.Kalpana

2, 
Mr N.SrikanthPrasad

3 
 

1
M.Tech.Student, Dept of ECE,, Sri Indu College of Engineering & Technology, Hyderabad,  

 2
Associate Professor, Dept of ECE Sri Indu College of Engineering & Technology, Hyderabad 

3
Associate Professor, Dept of ECE Aurora’s Engineering College, Bhuvanagiri  

 

 

Abstract: - The circuit sizes grow ever larger, test data volume and test application time grow 

unwieldy in system on chip(SOC) designs. Larger test data size demands not only increase in testing 

time but also requires large memory. Code compression techniques address this issue by reducing the 

code size. We present a novel test data compression technique using bitmask and dictionary selection 

to significantly reduce the testing time and memory requirements, which significantly improves the 

compression efficiency without introducing any decompression penalty.  To demonstrate the 

importance of our approach, we have performed test data compression using applications from various 

domains and compiled for a wide variety of architectures. Our algorithm outperforms the existing 

dictionary based approaches by up to 33% giving a best possible test data compression of 92%. 

 

Keywords: - Testing time, memory, bitmask, test compression, decompression. 

 
I. INTRODUCTION 

In system on chip(SOC) designs, the circuit grow ever lead to lager volume of test data which demands 

larger memory requirement and also increase in testing time. Memory is one of the key factor in embedded 

systems. Because a larger memory indicates the increased chip area, more power dissipation and higher cost. 

Test data compression place a crucial role reducing the testing time and memory requirements. It also 

overcomes the automatic test equipment bandwidth limitations, BIST. However, BIST is not appropriate for 

logic testing because of its inadequate test coverage. There are other alternatives for  test coverage, such as bit-

flipping and bit-fixing, with the disadvantage that structural information has to be provided. Test data can be 

reduced with the structural information, but there should be modification of the design. Test data compression 

algorithms can reduce the test data efficiently with out facing any problems mentioned above. The over view of 

a test compression methodology is shown in fig. 1. 

The original test data is compressed and stored in memory thus the memory size is reduced. The test 

data is compressed using the compression techniques. An on chip decoder decodes the compressed test data 

from the memory and delivers the original uncompressed set of test vectors to the design under test circuit. 

 

 

 

. 

 

 

 

 

 

 

 

Fig. 1. Test data compression methodology 

 

Dictionary-based test data compression has been used by Li et al. [1]. To improve compression 

efficiency as well as fast decompression mechanism, embedded systems uses the test data compression 

techniques. However the efficiency of these techniques increases only when the number of bits allowed to 

mismatch are high. Many recently proposed techniques [5] have tried to improve the dictionary based 

compression techniques by considering mismatches. Bitmask based compression [6] creates more matching 

patterns with the aid of bitmasks, while taking care of size of compressed code. We propose a test data 

compression algorithm that combines the dictionary selection [1]  and bitmask based [6]  techniques.   



A Novel Test Data Compression Algorithm 

9 

In bitmask based compression of test data, the primary concern is the presence of don’t cares in test 

data set. Since bitmask based compression technique [6] was not designed for data with don’t care values. This 

technique on test data does not result in a good compression efficiency. Our approach solves these problems by 

selecting dictionary selection and effective bitmask algorithms to improve compression efficiency and testing 

time. We demonstrate these techniques in the coming sections with the existing techniques [1], [6]. Our 

experimental results shows the compression efficiency as 33% greater than existing approaches. 

 In this paper the remaining papers describes about the reduction of test data into scan chains, dictionary 

selection method, bitmask based compression and decompression of test data, experimental results and finally 

conclusion of this paper. 

 

II. RELATED WORK 
Test data compression is an important factor in higher density circuits. Hence several techniques came 

for reduction of test data. Some of them are heterogeneous compression technique [15], multilevel Huffman 

coding [17],  variable to variable Huffman coding [19],  selective Huffman coding [10], run length Huffman 

coding [11], tunstall coding [12], FDR coding [16]. We have compared our technique with these approaches 

using ISCAS’89 benchmarks. 

The test data volume in SOCs can be reduced by using dictionary-based compression technique. Reddy 

et al. [22] and Li et al. [1] used fixed length dictionary entries to reduce test data volume. Hellebrand et al. [24] 

have proposed a test data compression method by remembering the mismatches with the dictionary entries. We 

have proposed a bitmask based compression technique, which gives better result than the existing Li et al. [1]. 

Bitmask based compression was developed by seong et al. [6] for code compression in embedded systems. We 

propose an efficient bitmask based code compression technique in our test data compression. From our results it 

shows that the compression efficiency is improved on comparing with existing bitmask based compression. 

Hillenbrand et al. [24] have proposed a test data compression technique which is some what similar to 

our approach to remember the mismatches from the dictionary entries. However there are some differences 

between the two. While they try to remember the positions of the bit changes. Our method uses the bitmask and 

it can also compress the test data which is having the don’t cares. Our approach performs better compression 

efficiency while uses simpler decompression engine compared to them. 

 

III. DICTIONARY BASED CODE COMPRESSION 
This section describes about the bitmask based code compression . usin the dictionary methods and 

highlight the challenges evolved in bitmask based technique for test data compression to reduce the testing time. 

Following figure describes about the bitmask selection.  

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            

0-copressed                                  0-use bitmask 

1-uncompressed                           1-no action 

 

11X010XX  ------      1     11101011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          

X10X110X --------    0    1              1 

00XX11X0 --------    0    1              0 

X0XXX100 ------      1     10111100              Content 

00XX1110   ------      0    1              0    index          

00XX11X0 ------       0    1              0               0      

0XXX0X10 ------      1     01110110                             

X101110X   ------      0    1              1               1 

XXX100XX ------     1     11110011 

X101XX1X ------      0    0  11  10  1                Dictionary 

 

          bitmask position                          bitmask value 

Original program           Compressed  program 

Fig. 2 Bitmask-based test data compression. 

 

A. Test data compression using bitmask. 

Dictionary based compression is one of the compression technique. With this compression technique 

test data size is not completely reduced. So further best compression is the combination of bitmask and 

dictionary selection methods. 

In dictionary based compression, each vector is compressed only if it is completely matches with a 

dictionary entry. We can compress the test data up to six data entries using bitmask based compression. Original 

test data is compressed is compressed as fallows. Those test vectors that match directly are compressed with 3 

00111110 

11011101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          



A Novel Test Data Compression Algorithm 

10 

bits. Whether the data is compressed or not is represented with the first bit. The second bit indicates whether it is 

compressed using bitmask or not. The last bit indicates the dictionary index. In our paper we discuss about the 

bitmask based test compression technique. In this the test data can also include the don’t cares. Data that are 

compressed using bitmask requires 7 bits. The first two bits, as before, represent if the data is compressed, and 

whether the data is compressed using bitmasks. The next two bits indicate the bitmask position and followed by 

two bits that indicate the bitmask pattern. 

We are using the fixed bitmasks, which are always employed on even-bit positions and hence only2two 

bits are sufficient to represent the four positions in a 8-bit data. Dictionary index is provided by the last bit. 

Original data is produced by XORing the dictionary entry with the bitmask. The compression efficiency is 

improved with this method on comparing with the proposed one. 

Since existing approach does not handle don’t cares, but in this paper we can use don’t cares also to improve 

compression efficiency.  The compression efficiency is reduced if all don’t cares are replaced with 0’s. hence 

instead of replacing all with 0’s  replace either with 0’s or 1’s. 

 

B. Major role in bitmask based compression 

There are three major roles in bitmask based test data compression. These three roles are independent 

and cant not me solved separately. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         Fig. 3 Bitmask-based test data compression 

 

1)  Dictionary selection: A profitable dictionary is to be selected which can reduce the number of bits due to 

frequency matching as well as bitmasks. 

2)  Selection of bitmask:  Suitable number and type of bitmasks are to be selected for compression. 

3)  Don’t care decision:  It is necessary to selectively replace each don’t care with either “0” or “1”. 

 

These factors place an important role in test data compression and to determine the performance of  an 

algorithm. At first we have to consider the dictionary selection. For this the frequency of occurrence provided a 

good base for selction, if any mismatches found that could be simply ignored as un compressed data. In this case 

bitmask based compression is used. Where mismatched data could also be compressed using bitmasks. 

Hence to choose a number  and type of bitmasks for compression a particular data vector is important. There are 

different types of bitmasks we have to select particular bitmasks that are most suitable for compressing a 

particular group of data. Ther is an another important role in this bitmask that is selective don’t care resolution 

in bitmask and dictionary selection. If we consider two vectors even though there is an lot of dissimilarity in 

those that can be matched and finally test data can be compressed. This is because the don’t care can be either 

“0” or “1”. 

 

IV. TEST DATA COMPRESSION 
This chapter we are going to discuss about the test data compression using bitmask. We have 

developed an efficient test data compression using bitmask and dictionary selection methods. The test data 

compression is expained with the flow chart as fallows. It has four major steps, first the input test data is 

devided into number of scan chains i. e the uncompressed test data into equal number of slices. Second step is to 

generate the dictionary entries and third is bitmask selection algorithmprovides the number and type of 

profitable bitmasks. Then finally test compression using don’t care resolution, dictionary and bitmask selection. 

Scan chain 

division 

Original text data 

Dictionary 

selection 

Bitmask 

selection 

Text compression 

Compressed test data 



A Novel Test Data Compression Algorithm 

11 

  

A. Compression algorithm 

Algorithm 1 shows the four basic steps of our algorithm. 

Inputs: Original test data 

Output: Dictionary and compressed data 

Begin 

   1: Scan chain division 

   2: Bitmask selection 

   3: Perform dictionary selection 

   4: Test data compression using bitmask selection and       dictionary 

Return compressed test data and dictionary 

End 

Input test data is divided into scan chains of  predetermined length. If the test data consists of  n test 

patterns, those are divided into m scan chains in the best balanced manner possible. That means each vector is 

divided into m sub-vectros, each of length l. if the length of the sub-vectros are not same then append zeros at 

the end of the each sub-vector. If ther are n vectors at the beginning, we obtain a total of n x l m-bit slices, which 

is our uncompressed data set that needs to be compressed. 

If we consider an example consisting of two test patterns 1110 and 1XX1 for a design with two scan 

chains. Therefore, length of each sub-vector l = 2. In this case, padding of don’t cares is not required. The 

fallowing figure explains about slices formation with the two vectors obtained by scan chain based partitioning 

of the two original test patterns. These are the required four slices that need to be compressed. 

 

B. Methods in bitmask selection 

In bitmask selection compressed data stores information regarding the bitmask type, bitmask location 

and bitmask pattern. The bitmask can be applied on different places on a vector and the number of bits required 

for indicating the position varies depending on the bitmask type. We need 5-bits to indicate any starting position 

on a 32-bit vector, if we do not restrict the placement of the vector. But in this paper we propose an bitmask 

selection with only byte boundaries requires 2-bits to represent four locations. 

There are two methods of bitmasks sliding and fixed. Fixed bitmasks are referred with the letter f  

while sliding bitmasks are referred with the letter s. to represent the length of the bitmask that is the coefficient 

of that reference. For example 2s means sliding bitmask with bitmask length 2.A fixed bitmask is one which can 

be applied to fixed locations where as sliding bitmask can be applied to anywhere in the test vector. So the 

number of bits required to represent the fixed bitmask are less on compared with the sliding bitmask. 

The performance of the test data compression is reduced if we use the bitmask type of length 4. This is 

because the probability that four corresponding contiguous bits will differ in a pair of test data is only 0.25%, 

which can easily be neglected. Therefore it is not profitable to use bitmask type of length 4. Hence bitmask type 

of length below 4 is used to get better performance. The number of bitmask selected is dependet on the lemma 

rule. 

The number of bitmasks is dependent on vector length and dictionary entries. Let l be the number of 

dictionary entries and N be the vector length. If y be the number of bitmasks allowed, then the number of bits 

required is less than N. 

The first two bits are used to represent whether the data is compressed or not, and if compressed , 

whether bitmask is used or not. The maximum number of bitmasks allowed can be found by equating the above 

expression with N, so that the worst case condition holds. If y < N then the value of y can be found easily by 

equating the right most value with 1. After this we can find the maximum number of bitmasks that are profitable. 

 

C. Dictionary selection 

Dictionary selection is a critical part in bitmask based test data compression. We used the clique 

partitioning algorithm of graph theory[12]. The clique partitioning is already discussed in the previous methods 

it is basically refers to the breaking up of a graph into several cliques, such that the nodes within one clique are 

all interconnected.  

A graph G is drawn with nodes that are separated with the scan chain as n X l nodes, where each node 

signifies a m-bit test vector. If they are compatible then draw an edge between the two nodes. Two nodes are 

compatible if and only if they meet the following requirements. First for all positions, the corresponding 

characters in the two vectors are either equal or one of them is a don’t care; or second condition is two vectors 

can be matched by predetermined profitable bitmasks. Each edge also contains weight information. The weight 

is determined based on the number of bits that can be saved by using that edge.  

Algorithm 2 Selection of dictionary entries 

Inputs: 1. Number of entries allowed, N 



A Novel Test Data Compression Algorithm 

12 

        2. Dictionary entries, S 

        3. Original test data vectors, V 

Output: Dictionary entries  

Begin 

     Number of profitable entries = {}; 

     1: for each dictionary entry compute savings by frequency  

      and bitmasks. 

     2: for count from 1 to N 

         2.1 Select the entry with maximum savings. 

         2.2 Profitable entries+ = D; 

         2.3 S = S-D. 

         2.4 V = V- entries composed by D. 

         2.5 Recompute the savings of S using V 

     Return Profitable entries 

End       

In this partitioning method, we developed three dictionary selection techniques: 1) two step method 

(TSM), 2) method using compatible edges (MCE). 3) method using compatible dges with edge weights. All 

these techniques uses a clique partitioning algorithm. We will discuss these techniques in detail as follows. 

 

1) Two-step method: in this method dictionary selection  

Is done based on the edges that are formed by direct matching. The graph will not have any edges 

corresponding to bitmask-based matching. then a clique partitioning algorithm[5] is performed on the graph. In 

this procedure it selects the node with the largest connectivity and is entered as the first entry to a clique. Now, 

the nodes connected with it are analysed, and the node having the largest connectivity is selected. This 

procedure have to be followed until no node remains to be selected. That means the nodes present in the 

partitioning are completed. The entries present in the clique are deleted from the graph. This algorithm is 

repeated until the graph becomes empty. 

       We have already some predefined number of dictionary entries, hence two possibilities may arise. The 

number of cliques selected may be greater than the predefined number of entries or vice versa. In the next case 

we need to fill in the dictionary entries with those obtained from clique partitioning. 

If the number of cliques is larger, we have to select the best dictionary entries, that is explained in the coming 

algorithms in this paper. With this method we have selected the dictionary based on the maximum overall 

savings.  

 

2) MCE without edge weights: in this method weight of  

All the edges are considered equal. Clique partitioning is performed as the same procedure followed in 

the two-step method. 

 

3) MCE with edge weights: Method using compatible  

Edges with edge weights is same as without edge weights. In MCE the edge weight is determined 

based on the number of bits saved if that edge is used for bitmask or direct matching. The total bits saved is 

taken into account in an clique partitioning. The total savings by each node is obtained as the sum of weights of 

edges originating from that node. 

Table I: Test data sets 

 

 

 

 

 

 

 

 

 

 

 

These methods are illustrated by considering an  

example, test data set in table 1.the resultant clique partitioning graph is shown in the figure 6. Direct matching 

of test data is shown with the straight lines. And the matching with the bitmask is shown with the dotted lines. 

Data set Entry 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

001X011101100110 

001X101101100110 

XX01X11X01100110 

XXX101X101100110 

1X00X10101100110 

X1000X0101100110 

11X001XX01100110 

0XXX00X101100110 

001X011101100110 

000X0XX101100110 



A Novel Test Data Compression Algorithm 

13 

The dotted lines will be absent in case of two-step method. The dotted lines will have the same weight as the 

straight lines for MCE. There are different weights in case of MEW. 

 

 

 

 

 

 

 

 

 

 

 

 

                              

                  Fig. 4 Graph model for the test data in table I. 

 

 Test data taken in an example is compressed using TSM, the cliques selected are {5,6,9} and {2,7, 8}. 

The compression efficiency is obtained as 47.2%. if we compress using MCE or MEW then clique partitioning 

selection are {10,2,3,1} and {5,6,9} then the compression efficiency is improved as 48%. 

 

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            

0-copressed                                  0-use bitmask 

1-uncompressed                           1-no action 

 

010101001                1    1              0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          

0X111010                 1    11X010XX               

01110101                  0    1              1 

0X011010                 1    0  11  10  0              Content 

X0X10101                0    1              0    index          

X11X1010                0    1              0               0      

XX0X0101               0    0  00  10  0                           

X1111010                 0    1              1               1 

10X00101                 1    0  10  11  1 

X0111010                 0    0  11  10  1                Dictionary 

 

          bitmask position                          bitmask value 

Original program           Compressed  program 

            Fig. 5 Compression using bitmask 

 

D. An example for test data compression 

Test data is compressed now with the selection of the dictionary and bitmask methods and the 

performance is improved with the usage of these two techniques. Which are already discussed in the previous 

example. In this example we have taken 10 test vectors and the clique partitioning is applied with these vectors 

by using one of the methods. Then the performance is improved as 35% more on comparing with the existing 

methods. From the fig 5. It is described that the original data is an uncompressed test data and the compressed 

data is an data after applying the methods for test data compression. 

 

V. DECOMPRESSION METHOD 
For bitmask encoding decompression engine is proposed, it is shown in the following figure that it can 

provide fast decompression mechanism on comparing with the proposed one. In this XOR gate is introduced in 

addition with the decompression scheme for dictionary based compression. The decompression system 

generates a test data length bitmask, which is then XoRed with the dictionary entry. The generation of bitmask 

is done in parallel with the dictionary access. With this time consumption is reduced. 

The overview of this decompression system is explained with the algorithm as follows. The 

decompression system takes the compressed vector as input. It checks first bit to see whether the data is 

compressed or not. If the first bit is “1” it implies that the data is uncompressed. Then it directly sends the 

uncompressed data to output buffer. If the first bit is “0”, means the data is com[pressed. Now there are two 

possibilities, they are the data is compressed using bitmask or it is directly compressed with dictionary entry. 

3 

2 
8 

10 

1 

5 

4 

9 

7 

6 

01110101 

11101010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          



A Novel Test Data Compression Algorithm 

14 

 

 
Fig 6.Decompression engine for bitmask-based encoding 

 

The second bit discuss about these two scenarios. If the second bit is “0”, it signifies that it has been 

matched using only dictionary entry. The index of the dictionary entry is used to read from the dictionary, and 

the data is transferred to the output buffer. If the second bit is “1”, then the system understands that the data is 

compressed using bitmasks. If it is compressed using bitmask then it needs to know about the bitmask value and 

bitmask position. Then it extracts the data corresponds to the dictionary entry. Then it creates a bitmask. Finally 

it creates a vector of length of the uncompressed data. It then finds the position and types of bitmasks and inserts 

the bitmasks in those positions. Along with that it lookup in the same way as dictionary based compression. 

Now these two results are XORed to get the uncompressed data, and send it to the output buffer. The result is 

finally sent to the design under test circuit. 

 

VI. RESULTS 
We compare our results with the popular existing methods of compression and decompression methods 

in accordance with the performance of the system. To demonstrate the usefulness of our method, we have 

applied it on the tests which were obtained from the MINTEST ATPG program[9] for the five largest ISCAS’89 

circuits. Then our results shows an improvement in the performance. 

 

Table II: Compression efficiency 

circuits TSM MCE MWE 

S5378 75.8 80.6 87.5 

S9234 91.9 92 92.3 

S35932 89.1 88 88.2 

S15850 71.2 73.6 74 

S38417 76.5 76.7 76.6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A. Compression overhead                    

Compression performance of an TSM, MCE and MEW  



A Novel Test Data Compression Algorithm 

15 

Using the five largest ATPG programs is shown in the table II. MCE and MEW generates better 

compression by exploiting compatible edges and thereby selecting larger cliques. However larger cliques may 

not generate better results when TSM is able to directly match with a large number of test vectors. The 

performance of the TSM is better on comparing with the others like MCE and MEW. The performance of the 

TSM is 88% while the performance of the MCE and MEW are 65%. 

The performance of the MCE and MEW are analysed by using the s38417. As we see the results the 

performance of the MEW is better than the MCE, which in turn performs better than TSM. However when we 

consider matching by one ortwo bitmasks, TSM only covers 8%, while MCE and MEW matches 31.5% and 

34% respectively. In some scenarios like s9234, MCE is seen to perform 0.1% better than MEW because MCE 

is almost 91% of the test vectors are compressed either directly or using bitmasks. 

 

Table III: Time taken for an compression 

circuits TSM MCE MWE 

S5378 1 2 2 

S9234 12 17 17 

S35932 2 1 2 

S15850 3 5 4 

S38417 7 13 15 

 

 

 

     

 

 

 

 

 

 

 

 

 

 

Run time information for compression of test data cases obtained from the five largest ATPG programs 

as shown in the table III. MEW is expected to give the best compression performance, but it takes the largest 

compression time.  We compare the compression performance of  MEW with those obtained by  employing the 

algorithms of Seong et al.[8] and Li et al.[12]. Fig.6 shows the comparison between the three techniques . We 

have compared the test data obtained from the largest circuits using the 128 dictionary entries because we have 

considered only 128 scan chains. 

From the figure the first bar represents the compression by using bitmask based compression 

technique[1] is directly applied for compression the given test data. The second bar represents the compression 

using dictionary entries of fixed 

length. The third bar represents our method, gives the best compression efficiency.  

On considering the differences between the applications of our approach and the proposed methods, 

our approach outperforms the conventional bitmask based approach[1] by 35% -60%. This can be attributed to 

the introduction of bitmasks in our approach. Bitmasks can allow bit changes and thus matches  mor e vectors in  

the given text data            . 

We now compare the compression efficiencies obtained by previous method Li et al.[6] with our 

approach for the test cases obtained from the five ATPG programs using both 64-bit and 128-bit scan chains. 

From the table IV  it is clear that in all cases our approach provides better compression efficiency than  existing 

methods of compression[6]. 

The performance of our approach is compared with the selective Huffman coding[14] on test vectors 

obtained from one of the largest circuits, shown with the results of comparison of the two compression schemes 

for 64 dictionary entries and variable number of scan chains. It compares the two approaches for 128 dictionary 

entries and variable number of scan chains. On observing the figure it is clear that our approach works better 

with greater number of scan chains . 

 

Table IV: Compression efficiency for different scan chians 

 Compression efficiency for Compression efficiency 



A Novel Test Data Compression Algorithm 

16 

64-bit scan chains for 128-bit scan chains 

 

Circuit Our approach Our approach 

S5378 76.73 87.55 

S9234 85.86 92.22 

S35932 80.21 88.31 

S15850 66.31 74.51 

S38417 72.51 77.12 

 

 
 

The compression efficiency is reduced with smaller number of scan chains and larger dictionary entries. 

It is important to note that our approach performs better than the dictionary based compression scheme in all 

cases. Even though the selective Huffman coding gives better performance ,its decompression area and 

performance overhead .  

For test data compression our approach outperforms the existing approaches in the presence of don’t 

cares also. Previous proposed methods do not have  with the don’t cares. We have compared results of our 

approach with those obtained when compressed using the existing bitmask based compression method[1].  Table 

V presents the results of test data compression, if we compare these results then it is clear that our approach 

provides better compression than the bitmask based compression. 

The test data sets are combined to get the same number of scan chains and then compress them. This is 

done in order to test the performance of our compression algorithm on really huge data sets which are formed by 

the combination of a pair of test data. We create three sets of test data by combining the test data of the circuits 

in each set. It can  be seen that our approach performs up to 30% better  than Li et al.[6].  

If we compare our approach with the algorithm proposed by Wurtenberger et al.[15] that compress test  

data by remembering the mismatches from the dictionary entries. Table V shows the comparison results, then it 

represents our approach performs better compression on compared to them. 

 

Table  V: Compression efficiency for different methods 

Vector length Dictionary 

method(%) 

Efficient bitmask 

method(%) 

16 11.25% 30% 

8 2.5% 12.5% 

 

 

 

 

 

 

 

 

 

 

 

Comparison of our approach with various 



A Novel Test Data Compression Algorithm 

17 

existing compression techniques is shown in table V. It shows the comparison of our approach with the selective 

Huffman coding. 

 

B. Decompression overhead 

We have used the decompression engine to decompress 

The compressed data obtained from s9234. These results are compared with those obtained using 

dictionary based compression and selective Huffman coding compression then it shows the improvement in 

performance. The results for the 64-bit dictionary entries. And the results for 128-bit dictionary entries are 

explained with the compression efficiency. If we compare these results, our method requires less area compared 

to dictionary-based compression. 

 

VII. CONCLUSION 
We have shown how bitmask-based compression and dictionary-based compression are used in test 

data compression to reduce the test data volume for SOC circuits. This paper developed an efficient bitmask and 

dictionary selection techniques for test data compression in order to create maximum matching patterns in the 

presence of don’t cares. Our test compression technique used bitmask and dictionary selection methods to 

significantly reduce the testing time and memory requirements. We have compared our results with the existing 

test data compression algorithms, our algorithm outperforms existing dictionary based compression[6] by up to 

35%, giving a best possible compression of 92%. Our approach also generates up to 60% improvement in 

compression efficiency compared to the existing bitmask-based compression[1] without introducing any 

additional penalty. 

In order  to achieve the optimal compression results, it is necessary to provide the data with better 

compression. This is achieved in our paper with high performance and reducing testing time on comparison with 

the previous methods of bitmask-based and dictionary-based selections. 

 

REFERENCES 
[1]. S. Seong and P. Mishra, “Bitmask-based code compression for embedded systems, “IEEE Trans. 

Comput.-Aided Des. Integer. Circuits Syst., vol. 27,no. 4,pp.673-685,Apr.2008. 

[2]. X. Kavousianos, E. Kalligeros, and D. Nikolos, “Optimal selective Huffman coding for test-data 

compression,” IEEE Trans.Computers,vol.56,no.8,pp.1146-1152,Aug.2007. 

[3]. H. Hashempour, L. Schiano,and F.Lombardi,”Error-resilient test data compression using tunstall 

codes,”in proc. IEEE Int. Symp. Defect Fault Tolerence VLSI Syst.,2004,pp.316-323. 

[4]. M. Ros and P. Sutton,”A hamming distance based VLIW/EPIC code compression technique,”in proc. 

Compilers, Arch., Synth. Embed. Syst., 2004,pp.132-139. 

[5]. N. Touba and E. McCluskey,”Altering a Pseudo-random bit sequence for scan based bist,” in proc. Int. 

Test Conf.,1996,pp.167-175. 

[6].  L.Li,K.Chakrabarty,and N.Touba,”Test data compression using dictionaries with selective entries and 

fixed-length indices,”ACM Trans. Des. Autom. Electron. Syst., vol.8,no. 4,pp.470-490,2003. 

[7]. S. Reda and A. Orailoglu,”Reducing test application time through test data mutation encoding,” in 

Proc.Des. Autom. Test Eur.,2002,pp. 387-393. 

[8]. T. Cormen, C. Leiserson, R. Rivest, and C. Stein, introduction to Algorithms. Boston, MA: MIT 

Press,2001. 

[9]. I. Hamzaoglu and J. Patel,”Test set compaction algorithm for combinational circuits,”in Proc. Int. Conf. 

Comput.-Aided Des., 1998, pp. 283-289. 

[10]. H. Wunderlich and G. Kiefer,”Bit-flipping BIST,” in Proc. Int. Conf. Comput.-Aided Des., 

1996,pp.337-343. 

[11]. S. Reddy, K. Miyase, S. Kajihara, and I. Pomeranz,”On test data volume reduction for multiple Scan 

chain desaign, in Proc. VLSI Test Symp., 2002, pp. 103-108. 

[12]. K. Basu and P. Mishra,”A novel Test-data compression technique using application-aware bitmask and 

dictionary selection methods,” in Proc. ACM Great Lakes Symp. VLSI, 2008,pp.83-88. 

[13]. A. Wurtenberger, C. Tautermann, and S. Hellebrand,”Data compression for multiple Scan Chains using 

dictionaries with correlations,” in Proc. Int. Test Conf.,2004,pp.926-935. 

[14]. A. Al-Yamani and E. J. McCluskey, “Seed encoding for LFSRs and  cellular automata,” in Proc. 

M/IEEE Des. Autom. Conf., Jun. 2003,  pp. 560–565. 

[15]. A. Chandra and K. Chakrabarty, “Test data compression and test  resource partitioning for system-on-

a-chip using frequency-directed  run-length (FDR) codes,” IEEE Trans. Computers, vol. 52, no. 8, pp. 

1076–1088, Aug. 2003. 



A Novel Test Data Compression Algorithm 

18 

[16]. M.-E. N. A. Jas, J. Ghosh-Dastidar, and N. Touba, “An efficient test  vector compression scheme using  

elective Huffman coding,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 22, no. 6, pp. 

797–806, Jun. 2003. 

[17]. A. Jas and N. Touba, “Test vector decompression using cyclical scan  chains and its application to 

testing core based design,” in Proc. Int. Test Conf., 1998, pp. 458–464. 

[18]. M. Nourani and M. Tehranipour, “RL-Huffman encoding for test compression and power reduction in 

scan pplications,” ACM Trans. Des. Autom. Electron. Syst., vol. 10, no. 1, pp. 91–115, 2005. 

[19]. X. Kavousianos, E. Kalligeros, and D. Nikolos, “Test data compression based on variable-to-variable 

Huffman encoding with codeword reusability,” IEEE Trans. Comput.-Aided Des. Integr. Circuits 

Syst.,vol. 27, no. 7, pp. 1333–1338, Jul. 2008. 

[20]. L. Lingappan, S. Ravi, A. Raghunathan, N. K. Jha, and S. T. Chakradhar, “Test-volume reduction in 

systems-on-a-chip using  heterogeneous and multilevel compression techniques,” IEEE Trans. 

Comput.-Aided Des. Integr. Circuits Syst., vol. 25, no. 10, pp. 2193–2206, Oct. 2006. 

[21]. M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness. 

New York: Freeman, 1979. 

[22]. M. Tehranipour, M. Nourani, and K. Chakrabarty, “Nine-coded compression technique for testing 

embedded cores in SOCs,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 13, pp. 719–731, 

Jun. 2005. 

 


