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On L*-Convergence of Cosine Sums
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Abstract:- A necessary and sufficient condition for L-convergence of a modified trigonometric sum has been
obtained which generalizes a result of Kumari and Ram[5]. A result of Fomin [2]follows as a corollary of our
result.
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l. INTRODUCTION
Let S,(x) denote the partial sum of the cosine series

1.2) (a0/2) + z ay oS kx ,
k=1
and let f(x) = lim,_,, Sy(X), if it exists. The convergence of the series (1.1) in the metric space L, has been studied by
various authors under different conditions on the coefficients a .

Theorem A [8]. If {a} is convex (A% > 0, for every k) null sequence, then the cosine series (1.1) is the Fourier series of
its sum f, and

[ISh(x) = f(X)|| = 0(1) , ifand only if a,logn=0(1),n — .
Kolmogorov extended the definition of convex null sequence. A sequence {ay} is said to be quasi-convex if a, = o(1), k —>

o, and the series Z k| A% <.
k=1

Theorem B[4]. If {a} is a quasi-convex null sequence, then the cosine series (1.1) is the Fourier series of its sum f, and
ISh(x) — f(X)|| = o(1) , if and only if a,log n =0(1), n—.

Sidon generalized the concept of convex (quasi-convex) null sequence. We say a sequence {a,} belongs to the class S[6], if
there exists a monotonically decreasing sequence {A.} such that X A, < o, and |A a,| < Ay, for every k.

A quasi-convex null sequence satisfies the class S if we take A, = Z | A%y .
m=n

Theorem C[7]. Let {a} belong to the class S. Then the cosine series (1.1) is the Fourier series of its sum f and

ISh(X) — f(x)| = o(1), ifand only if a,logn=o0(1), n—>x.
Fomin[2] generalized Teljakovskii’s Theorem by introducing a new class F, . A null sequence {a.} belongs to the class Fy,
if for some 1 <p <2, we have

n o0 B
p
S{Sisal o] <
k=1 \ k=n
and proved that F, < BV, where BV denotes the class of bounded variation and
if {a} ¢ Fp, then f ¢ L* (0, m) and Z k p_1|Aak | P < o0,

k=1
Theorem D [2]. Let {a.} satisfy the conditions of F, then the cosine series (1.1) is the Fourier series of its sum f and

[ISa(x) — f(x)|| = o(1) ifand only ifa,logn=o0(1), n>w.
Kumari and Ram [5]introduced a new modified trigonometric cosine sum
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12) F00= (@/2)+ Y, Y Afi)kcosk,

k=1 j=k
and proved

Theorem E[5]. Let the sequence {a,} satisfy the conditions of the class S.
Ifa ,logn=0(1),n—»>x, then ||f(x) - f,(X)|| =0(1), n—>x.

In this paper, we generalize Theorem E by obtaining a necessary and sufficient condition for the convergence of
the limit of (1.2) in the metric space L by taking {a.} in the class F, . We also deduce Fomin’s Theorem D as a corollary
from our result.

1. LEMMA

We require the following Lemma for the proof of our result:

Lemma 1[3]. If Dy(x), Dx(X) and Fy(x) denote Dirichlet, conjugate Dirichlet and Fejér’s kernel respectively, then Fy(x) =
Dn(X)— (1/n+1) D'y(x) .

1. MAIN RESULT
Theorem 1. Let {&a} belong to the class F,. Then
If(x) — f.()|| = o(2) if and only if a,log n =0(1), n—>w.

Proof. Application of Lemma 1 and summation by parts give

a a
- A —J k cos kx
2 ]

[ an+l J =~
= S(x) - — | D'W(X)
n+1

= Sp(X) — aps1 Dn(X) + 841 Fn(X)

@1 fix) = +

T
M:

—
1l
F'S

n
= Z Ady Dy(X) + an+1 Fn(X)
k=0

Since Dy(x) = O(1/x?) and a, — 0 as n—oo, lim,_,,, f,(X) exists and
f(X) = limp_,., f,(X). Now,
1

@2 [ -0l dx= [ M- 1dxe [ 16,00 - f00ldx
0 0 1

For the first integral of right hand side of (3.2),we have

If.0) =FO) [dx < | fon(x) = fOJIdx + | [fa(x) = on(x)ldX,

O 5 |
O 5 |
Ot 5 |

where o,(x) is the Fejér sum of S,(x), and
1

j lon(X) = f(ldx = O([lon(X) — fF(X)[|) , n—>0 .
0

From (3.1), we get

£4(X) — On(X) = anes Fa(X) + [Lj ZkAaka(x)-(L) > a,D, (x)
k=1

n+1) v n+1
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Therefore,
1

) 3 KlAa, /1D, (9] ox

1
n+1

<) S—— N

1,0) — 0 (9 X < (12) aner +(

1

( 1 ] Zn:|ak|:[|Dk(x)| "

n+1 k=1

[f2() = 6n(x)| dx =0 Klj k|Aak|} LN
=]

Hence, for the first integral in (3.2) we have

or

O t—— 5 |~

O 5 |

If.(x) - f(x)| dx = O (“o-n (x)— f(x)||)+o K%)Zn: k|Aak|} | N> .

For the second integral of right hand side of (3.2), we have

3.3) Ifa(x) = fOQ] dx < I Z Ay Di(x)] dx

k=n+1

|an+an(X)| ax +

S| P C—
S| he—y
S| P C—

o0

| D AaDldx

T
< J. [an+1 Fa(X)|dx +
0 k=n+1

S| P C—

| D AaDyx) dx .

k=n+1

= (n/2)ap +

S| P C—

Combining all these estimates as in [2], we obtain

Va

j If(x) — f(x)ldx = O (”an(x)— f(x)]+ En klaa, [+ Ew kp‘1|Aak|pj
k=1 k=n+1
0 =0(1),n>w .

This completes the proof of our result.

Corollary. If {a} belongs to F, then

ISn(x) — f(x)|| = o(1) if and only if a,log n =0(1), n—w.
Proof . We have

[ 1100 = 8000 1dx = [ 1) — £, + F(x) — Su(x) | dx
0 0

<)) — (%) Jdx +j | (%) = Sn(x) [dx

0

<

Ot—a O*+—3

T T

£ —F00) 0+ | fanes Dol + | JaniaKo() Jdx
0 -

and
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T

J

0

T

lara D) [dx < [ 15,00—8,00 ldx + [ [ aneaKo(x) | dx

0 -7

a

< [ 100 =8, ldx + [ [aniKi()lox.

—T

o

T T
Since I | Dn(X) |dx behave like log n for large values of nand J.| f(x)-f, (X)| dx=0 by our theorem for n— , the

0

corollary follows.
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