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Abstract—In the recent past, various graph clustering algorithms have been proposed. Each algorithm has its own 

behaviour in terms of performance on a specific data set. So, it is really hard to tell which one is the most efficient and 

optimal. The concept of k-clique percolation technique in random networks is introduced where k is the size of the 

complete sub-graphs that are organized into large scale cluster and are analytically and numerically investigated. Erdos-

Renyi random graph which is undirected and unweighted is choosen for studying the k-clique percolation technique. In 

an Erdos-Renyi graph with N vertices, where two vertices are connected to each other by an edge with probability pc(k), 

the percolation transition of kcliques takes place when pc(k) = [(k-1)N]-1/(K-1). Clique percolation has been used in the past 

for identifying overlapping communities in large real networks. In this paper, restricted neighbourhood search clustering 

(RNSC) and Markov Clustering (MCL) algorithms are tested in terms of efficiency and optimality using Erdos-Renyi 

random graphs with varying graph sizes and also using the k-clique percolation technique. The comparison is done 

between these two algorithms in terms of cluster size and run-time with varying pc (k) according to increasing graph size. 

To validate the cluster quality obtained by these algorithms, normalized mutual information (NMI) and adjusted mutual 

information (AMI) are calculated using large scale Erdos-Renyi graph. It is shown that RNSC algorithm is better than 

MCL using the k-clique percolation technique in terms of cluster size, run-time, NMI and AMI. 
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I. INTRODUCTION 
Cluster analysis has been in great interest in wide class of complex systems, occurring from the level of cells to 

society. The real networked data are used for the analysis of performance measure in terms of anomalous degree distribution, 

diameter, spreading phenomena, clustering coefficient and correlations [1, 2]. The local structural unit of networks has been 

paid great attention in the field of graph clustering. The global features can be interpreted by the distribution and clustering 

properties [3] of small and well defined sub graphs, introduced as “motifs” [4].Communities [5] are often represented as 

somewhat larger units, made up of vertices, which are more densely connected to each other than to the rest of the network 

and also denoted as the most essential structural units of real networks. In recent past, many graph clustering methods like 

Markov Clustering (MCL) [6], restricted neighbourhood search clustering (RNSC) [7], and Molecular Complex Detection 

(MCODE) are used to divide the whole network into smaller pieces .But the most important concept of overlapping 

communities is not introduced in those methods. Percolation is a technique on graphs which can be applied to identify the 

overlapping communities effectively and deterministically in large real networks. The uncorrelated classical Erdos–Renyi 

random graph [8] is related to the percolation transition [9]. The transition is taking place at p=pc 1/N, where p is the 

probability that two vertices are connected by an edge and N is the total number of vertices in the graph. A giant component 

which is also referred to as the percolating component is appeared and resulted in a dramatic change in the overall 

topological features of the graph and also in the centre of interest for other networks as well.  

In recent past RNSC, MCL came into the field of graph clustering and each algorithm has it‟s own method and 

relies on a very different approach. RNSC, which is a cost based clustering method and performs some local search 

iteratively to obtain some optimum clustering in an efficient way. RNSC algorithm is a stochastic technique, which uses 

restricted neighbourhood search. The memory requirement for RNSC is o (n2).The worst-case memory required is o (n2) 

when the graph is completely connected. The complexity of a move in the naive cost function is o (n), which is the size of 

the restricted neighbourhood of a move M. The Markov clustering, proposed by Stijn van Dongen, this delivers a very fast 

clustering method and also provides a natural clustering in weighted graphs [10]. This algorithm is based on the prototype of 

stochastic flow simulation technique. So it is very tough to say that which one is the most efficient and optimal in the case of 

performance and robustness. Here, using the percolation technique it can be checked that which one gives better 

performance in terms of efficiency and optimality between RNSC and MCL. 

 

II.  GRAPH CLUSTERING ALGORITHMS AND PERCOLATION TECHNIQUE 

A.  RNSC (Restricted neighbourhood search Clustering) 

RNSC [11] is a local search metaheuristic technique. It is used to minimize the cost function in the solution space. 

According to Stijn van Dongen, the vertex-wise performance criteria for clusterings on unweighted graphs are as the sum of 

coverage measure is taken on each vertex. When the naive cost function fails in considering changes to small neighbourhood 
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as being more significant than changes to large neighbourhoods then a more expressive new cost method, scaled cost is 

derived. The scaled function tries to optimize the output from naive function and reach to the global optimal solution.  

 

B.  MCL (Markov clustering) 

The Markov clustering, proposed by Stijn van Dongen, which is provided a very fast clustering method and is also 

contributed a natural clustering in weighted graphs. The prototype of stochastic flow simulation technique is used for that 

algorithm. Flow expansion and inflation operators are used to produce a natural grouping of densely flow-connected 

vertices. These two operators are obtained from the input graph and transformed the probability of the random walk in the 

markov chain like way to another. Actually, the inflation is strengthening the flow where it is strong and also weakening the 

flow where it is already weak and the flow expansion is used for propagating the flow within the graph. MCL is very fast 

also for sparse graphs.  

 

C. Clique percolation (Percolation technique) 

The analytic and simulation results are related to the appearance of a giant component, made of complete 

subgraphs of k vertices (k-cliques) and those results are obtained through the calculation of the threshold probability. Some 

concepts of k-clique adjacency, k-clique chain, k-clique connectedness and k-clique percolated subgraph are introduced 

here: i) K-clique adjacency: two k-cliques are adjacent if they share k-1 vertices, i.e., if they differ only in a single vertex ii) 

K-clique chain: a subgraph which is the union of a sequence of adjacent k-cliques. iii) k-clique connectedness: two k-cliques 

are k-clique –connected if they are parts of a k-clique chain. iv) k-clique percolation cluster (component): it is a maximal k-

clique connected subgraph, i.e., it is the union of all k-cliques that are k-cliques connected to a particular k-clique. 

In the k-clique adjacency graph, k-clique percolation cluster is very much like a regular (edge) percolation cluster 

where the vertices represent the k-cliques of the original graph, and there is an edge between two vertices if the 

corresponding k-cliques are adjacent. Rolling a k-clique template is very much like moving a particle from one vertex of this 

adjacency graph to another one along an edge is equivalent to from one k-clique of the original graph to an adjacent one. A 

k-clique template can be assumed of as an object that is isomorphic to a complete graph of k vertices. Such a template can be 

located onto any k-clique of the original graph, and rolled to an adjacent k-clique by repositioning one of its vertices and 

keeping its other k−1 vertices fixed. Thus, the k-clique percolation clusters of a graph are all those subgraphs that can be 

fully discovered but cannot be left by rolling a k-clique template in them. Now, the threshold probability (critical point) of k-

clique percolation using heuristic arguments is presented as a general result. It is examined that a giant k-clique component 

appears in an Erdos-Renyi at p = pc (k), where  

                                                                      Pc (k) =
1

1

1

[( 1) ]Kk N 

.                                                         (1) 

Obviously, for k = 2 this result agrees with the known percolation threshold (pc = 1/N) for Erdos-Reyni graphs, because 2-

clique connectedness is equivalent to regular (edge) connectedness.  

 

D. Some parametric concepts 

NMI (Normalized Mutual Information): It is the measure of the quality of clusters, which is the mutual 

information shared between clusterings. This is originally proposed by Alexander Strehl and Joydeep Ghosh [12]. Assume, 

there are set of groupings of clusterings as 
( ){ | {1,.., }}q q r  which is denoted by . Let 
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( )a and 
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( )b . Let 

,h ln represents the number of objects that are in hc  according to ( )a and in cluster lc  according to 
( )b .The symbol 

( )NMI is denoted as the estimation of NMI. 
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AMI (Adjusted Mutual Information): 
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Table 1: The Contingency Table, ( )ij i jn U V   

 
 

To correct the measures for randomness it is necessary to specify a model according to which random partitions 

are generated. Such a common model is the “permutation model” [13], in which clusterings are generated randomly subject 

to having a fixed number of clusters and points in each clusters. Using this model, which was also adopted by Hubert and 

Arabie (1985) for the ARI, we have previously shown [14] that the expected mutual information between two clusterings U 

and V is: 
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                                                                                                                                                                                                   (3) 

 

As suggested by Hubert and Arabie (1985), the general form of a similarity index corrected for chance is given by: 

 

 

AdjustedIndex =
Index- Expected Index

Max Index-Expected Index
 

 

This is upper-bounded by 1 and equals 0 when the index equals its expected value. Having calculated the 

expectation of the MI, the adjusted form is proposed, which is denoted as the adjusted mutual information (AMI), for the 

normalized mutual information. For example, taking the NMImax we have: 

 

AMImax(U,V) =
NMImax(U,V)-E{NMImax(U,V)}

1-E{NMImax(U,V)}
 =

I(U,V)-E{I(U,V)}

max{H(U),H(V)}-E{I(U,V)}
 

                                                                                                                                                                                                   (4) 

III.  EXPERIMENTAL RESULTS AND DISCUSSIONS 

In this section, a number of experiments with different test cases are presented to evaluate the efficiency, cluster 

size and optimality of graph clustering algorithm RNSC, compare to MCL with Erdos-renyi graph data. There are 15 

experiments done with tabu length 50 for obtaining the result in case of RNSC and in case of MCL there is using highest 

inflation value 3 with scheme 5 for obtaining the result. 

 
Figure 1. Run-time with varying graph size 

 

From Fig.1, it is observed that the run-time is decreasing in case of RNSC in three conditions when pe =pc, pe <pc 

and pe >pc and in case of MCL, run-time is increasing gradually in the three cases for k= 6 cliques community. 
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Figure 2. Cluster size with varying graph size 

 

From Fig.2, it is observed that the cluster size is growing larger for RNSC in these three cases pe =pc, pe <pc and 

pe >pc but in case of MCL, cluster size is gradually decreasing in the three cases for k=6 cliques community. 

 

 
Figure 3. Density with varying graph size 

 

 
Figure 4. Edge probability pe with varying graph size 

 

From Fig.3,Fig.4, it is observed that the density and probability measure for the Erdos Renyi graph of different 

graph size in the three conditions when pe =pc, pe <pc and pe >pc for k=6 cliques community. 

 

 
Figure 5. AMI with edge probability Pe 
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From Fig.5, it is revealed that the AMI measure of both RNSC and MCL‟s optimality check on the basis of edge 

probability pe for k=6 cliques community .In this figure RNSC is performing better than MCL for the three cases as pe <pc, 

pe =pc and pe >pc. 

 
Figure 6. NMI with edge probability pe 

 

From Fig.6, it is revealed that the NMI measure of both RNSC and MCL‟s optimality check on the basis of 

probability of k=6 cliques community. In this figure also, RNSC is performing better than MCL for these three cases as 

pe<pc, pe =pc and pe >pc. 

 

IV.  CONCLUSIONS 
This paper presents a critical comparison between two popular graph clustering algorithms RNSC and MCL using 

percolation technique in terms of efficiency and optimality .The results show that RNSC is more efficient and optimal than 

MCL in the three cases as pe=pc, pe <pc and pe >pc. Using Erdos-Renyi graph with different graph sizes, all the testings are 

done for RNSC and MCL algorithms. NMI and AMI are used to evaluate the optimal clustering. RNSC and MCL algorithms 

are tested using Erdos-Reyni graphs with different graph sizes. The time complexity of RNSC is o (n3).The time complexity 

of MCL is o (n.k2) where n is the number of nodes and k is the number of resources allocated per node. Also RNSC can be 

further extended by parallel move method which will give better result in the case of run-time or average cost.  
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