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ABSTRACT 

Unmanned Aerial Vehicle(UAV) aerial photography has a broad application prospect in environmental 

monitoring and other fields. Still, its small target detection faces challenges such as geometric deformation, 

missing features, and dense distribution. Aiming at the shortcomings of YOLOv8 in small target detection, this 

paper proposes an improvement scheme: introduce the efficient channel attention (ECA) mechanism in the 

backbone network to enhance the ability to capture fine features, and add a new 160×160 high-resolution 

detector head to adapt to the high-resolution feature extraction for small targets, meanwhile, removing the 

original large-target detector head. Experimental results show that the improved model mAP50 increases from 

62.2% to 65.4% and mAP50-95 increases from 33.3% to 36.8% of the original network of YOLOv8n, which 

effectively improves the detection accuracy of small targets in UAV aerial photography scenarios through the 

synergistic optimization of the attention mechanism and the multi-scale detector head and provides a highly 

efficient solution to small target-intensive tasks such as remote sensing and aerial photography. It offers an 

efficient solution for small target-intensive tasks such as remote sensing and aerial photography. 
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I. INTRODUCTION 

In recent years, object detection technology in computer vision [1] has undergone a revolutionary 

development process, transitioning from traditional methods to deep learning-driven approaches. Early object 

detection algorithms based on manually designed features, such as the HOG+SVM combination, relied on 

artificially designed feature extraction rules, resulting in limited detection accuracy and generalization 

capabilities in complex scenarios. With the rise of deep learning, the R-CNN series of algorithms pioneered a 

new era of end-to-end object detection by introducing convolutional neural networks (CNNs). Subsequently, 

Fast R-CNN and Faster R-CNN continuously optimized the region proposal network, significantly improving 

detection efficiency; The emergence of single-stage detection algorithms such as the YOLO (You Only Look 

Once) series and SSD (Single Shot MultiBox Detector) has pushed real-time performance and accuracy to new 

heights, making object detection mature in both theoretical research and engineering applications. 

The rise of unmanned aerial vehicle (UAV) technology [2] has injected new vitality into the field of 

object detection. Compared to traditional ground-based perspectives, the visual systems mounted on UAVs can 

overcome physical obstacles such as terrain and buildings, providing a unique bird's-eye view to cover large 

areas and enabling object detection in complex scenarios. At the hardware level, UAVs are equipped with high-

resolution optical cameras, infrared thermal imagers, and multispectral sensors, enabling the collection of 

multimodal data under various lighting and weather conditions; At the algorithm level, by deeply integrating 

deep learning algorithms with UAV systems and utilizing lightweight network structures and model 

compression techniques, UAVs can efficiently parse the semantic information of ground objects and accurately 

locate them on edge devices. For example, in agricultural scenarios, UAVs can quickly identify the growth 

status of individual crops; in urban traffic monitoring, they can capture the dynamics of vehicles and pedestrians 

on roads. 

This technological integration not only expands the application dimensions of object detection but also 

demonstrates broad prospects across multiple fields. In environmental monitoring [3], drones can dynamically 

monitor river pollutants, forest fire hazards, and other issues, promptly identifying minor pollution sources or 

fire sources; in emergency disaster response, leveraging their mobility advantages, they can swiftly screen for 

signs of life in earthquake rubble, providing precise coordinates for rescue operations; In the field of intelligent 
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transportation, drone aerial photography can assist traffic management departments in obtaining a 

comprehensive view of road conditions and identifying issues such as illegal parking and traffic congestion; in 

precision agriculture, through multispectral image analysis, drones can accurately detect crop pests and diseases, 

as well as soil fertility distribution, to support variable-rate fertilization and precision irrigation. The deep 

integration of drones and object detection technology is driving industries toward greater intelligence and 

efficiency. 

Although UAVs have significant advantages in target detection, such as wide coverage and strong 

mobility, their technology still faces multiple challenges. UAV target detection technology faces multiple 

challenges: geometric variation of air view and resolution decay lead to missing target features, which affects 

model feature extraction; complex weather and lighting interference make it difficult to balance detection 

accuracy and robustness; multi-target occlusion, cross-scale identification, and multi-task resource allocation 

conflicts constitute technical pain points, and subtle differences between similar targets put forward higher 

requirements for algorithmic feature resolution capability. To address the technical bottlenecks, research is 

shifting from traditional manual feature detection to deep learning methods based on convolutional neural 

networks (CNN). Deep learning solves the problem of real-time and environment adaptability through end-to-

end training and has significant advantages in complex scene feature characterization, cross-scale target 

detection, and multi-tasking, and its generalization ability and customized architecture become the core solution 

to balance detection accuracy and real-time performance, which promotes the technology to move forward to 

engineering applications. 

The development of convolution-based deep learning algorithms has gone through key stages. Hinton's 

Deep Belief Network (DBN) realizes multi-layer feature extraction through unsupervised pre-training, but its 

complex Boltzmann machine stacking structure leads to high computational costs, limiting its practical 

application. 2012 saw the beginning of the CNN era with AlexNet, and VGGNet followed by small 

convolutional kernel stacking, In 2012, AlexNet started the CNN era, followed by VGGNet through small 

convolutional kernel stacking, GoogleNet introduced multi-scale feature fusion, and ResNet using residual 

connection to break through the bottleneck of gradient disappearance, which pushed CNN to reach a new height 

in image classification. CNN's mechanism of local connection and weight sharing reduces the number of 

parameters, but there are limitations in dealing with sequential data, and although LSTM alleviates the gradient 

problem of traditional RNNs through the gating mechanism, the computational efficiency of LSTM can hardly 

meet the real-time demand.  

The YOLO (You Only Look Once) algorithm proposed by Joseph Redmon in 2015 created a new 

paradigm of single-stage target detection, unifying target localization and classification tasks in a single end-to-

end network for the first time. YOLO's lightweight network design, highly efficient feature extraction strategy, 

and end-to-end training mode show its unique advantages in real-time target detection of UAVs and other 

scenarios that are sensitive to computational resources and promote the rapid advancement of target detection 

technology from theoretical research to engineering implementation. The YOLO series of target detection 

algorithms have matured, but there are still significant shortcomings in the field of small target detection, 

especially in the scene of small size and high-density distribution of objects under the viewpoint of UAVs. To 

solve this problem, this paper presents a new network structure based on YOLOv8n with modifications. The 

main contributions of this paper are as follows: 

（1）To enhance the capture of subtle features, a layer of improved channel attention mechanism ECA is 

introduced in the backbone network. 

（2）The network adds high-resolution detectors suitable for small targets, enabling more accurate 

detection of small aerial targets. 

 

II. RELATED WORKS 

The YOLO series of object detection algorithms, with their efficient detection speed and excellent 

overall performance, have matured in the field of general object detection and are widely used in scenarios such 

as security surveillance and autonomous driving. However, in the field of small object detection, the YOLO 

series of algorithms still exhibit significant shortcomings, particularly when viewed from a drone's perspective, 

where their limitations become even more pronounced. During drone aerial photography, due to the high flight 

altitude, objects in the frame appear smaller in size. In scenarios such as urban buildings and farmland crops, 

small objects often exhibit dense distribution patterns. On one hand, the downsampling operation in YOLO 

algorithms compresses image dimensions, leading to further loss of small object features and making them 

difficult to effectively capture. On the other hand, its grid-based prediction mechanism lacks sufficient 

localization accuracy for small objects, often resulting in missed detections or false positives. Additionally, the 

YOLO algorithm does not sufficiently learn the features of small targets during training, resulting in a 

significant decline in recognition ability when faced with small targets in complex backgrounds. 
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To address this issue, researchers have explored improvement strategies from multiple dimensions. In 

terms of network structure optimization, some studies have introduced Feature Pyramid Networks (FPN) or Path 

Aggregation Networks (PANet) to establish multi-scale feature fusion mechanisms, combining the high-

resolution detail information from shallow layers with the semantic information from deep layers to enhance the 

model's ability to extract small object features. Other studies have attempted to embed attention mechanisms, 

such as the Spatial Attention Module (SAM) and Channel Attention Module (CAM), into the backbone network 

to focus the network on small target regions and improve sensitivity to subtle features. In terms of data 

augmentation techniques, researchers have employed methods such as super-resolution reconstruction and 

mosaic data augmentation to artificially increase the proportion of small targets in images, enrich the diversity 

of training data, and help the model learn more small target features. Furthermore, model fusion is another 

important direction for improvement. By integrating the YOLO algorithm with other algorithms that excel at 

small object detection, such as integrating lightweight small object detection subnetworks into the YOLO 

framework, researchers can leverage the strengths of different algorithms to compensate for YOLO's 

shortcomings in small object detection. Additionally, for drone aerial photography scenarios, some research 

teams have specifically constructed datasets containing a large number of small object samples, and through 

targeted training, optimized the model's detection performance in such scenarios. 

At the level of feature representation optimization, in the field of feature hierarchical representation, the 

Dense Similar Object Detector (DSOD) proposed in the literature [4] densely fuses shallow detail features (e.g., 

edges, textures) with deeper semantic features by constructing cross-layer feature interaction networks. 

Specifically, the model introduces dense jump connections in the feature pyramid so that the feature maps at 

each level can receive detailed information from all previous layers, thus constructing a feature pyramid 

containing multi-granularity semantics. Experiments show that this method improves the detection accuracy by 

12.3% on the UAV remote sensing small target dataset, but due to the proliferation of the number of parameters 

caused by the dense connections, it exposes the tuning complexity and efficiency bottleneck caused by multi-

hyper-parameter design. Lin et al. [5] proposed the feature pyramid network (FPN), which achieves multi-scale 

feature expression optimization with only an 8% increase in computation through the bottom-up path 

augmentation and horizontal connection mechanism. The core of FPN lies in the use of up-sampling operations 

to optimize multi-scale feature expression. The core of the FPN is to utilize the up-sampling operation to 

recover the spatial details of shallow high-resolution features, and at the same time inject the deep semantic 

information through the lateral connection to form a pyramid structure with both details and semantics. This 

design improves the insulator defect detection accuracy by 18.7% in a small target detection scenario of UAV 

power inspection and keeps the inference speed in real time, which provides a classical paradigm for balancing 

feature characterization and efficiency. Yang et al [6] proposed the MA-ResNet model which innovatively 

embeds the hybrid attention mechanism into the residual network. Specifically, Spatial Attention and Channel 

Attention are introduced in the residual block in parallel, with the former capturing the target spatial distribution 

features through convolutional operation and the latter refining the inter-channel dependencies through global 

average pooling. Experiments show that this structure improves the detection accuracy of small targets with 

pixel size < 20×20 by 21.5% in UAV farmland pest detection, and significantly enhances the target-background 

feature differentiation ability, especially in dense crop backgrounds. 

In the direction of feature fusion technology, literature [7] proposes a bi-directional feature fusion 

module (BFFM), which enhances the feature representation of small targets in complex scenes by constructing a 

multi-scale feature pyramid, however, this method requires high computational resources and hardware 

performance. Lu et al. [8] propose an end-to-end feature fusion scheme based on the SSD network, which is 

focused on the semantic enhancement of shallow features. A feature enhancement module is added to address 

the shortcoming that the shallow layer of the SSD model contains only low-level visual features, and the 

potential semantics of the shallow features are refined through convolutional operations. The enhanced shallow 

features are fused with the deep features by cross-layer splicing: firstly, the deep features are up-sampled to the 

shallow resolution by bilinear interpolation, then they are spliced with the enhanced shallow features in the 

channel dimension, and finally, the fused feature map is generated by 1×1 convolution. On the UAV farmland 

pest detection dataset, this scheme improves the pest target detection accuracy from 55.3% to 68.9% of the 

original SSD model, but due to the addition of two new convolutional layers and cross-layer splicing operations, 

the number of model parameters increases from 23.2M to 37.5M, and the amount of computation (GFLOPs) 

improves by 51%, which results in the frame rate of the UAV detection system with MobileNetv3-SSD 

decreasing from 45FPS to 1FPS. The frame rate of the UAV detection system equipped with MobileNetv3-SSD 

decreases from 45FPS to 31FPS, which makes it difficult to meet the real-time detection requirements in 

dynamic flight scenarios. 

In terms of detection structure innovation, literature [9] designed an enhanced sensing field module 

based on YOLOv7, which effectively improves the detection of small and overlapping targets; Lou et al. [10] 

proposed dc-YOLOv8, which retains more contextual information by improving the down sampling mechanism; 
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Zhang et al. [11] introduced a recursive mechanism into the YOLOv5 framework to form a MEU-YOLOv5, 

which reduces the problem of missed detection of small targets. YOLOv5, which reduces the problem of missed 

detection of small targets. While these improvements improve the detection accuracy, they generally face the 

challenge of balancing the computational efficiency and model complexity, which provides diversified technical 

paths for small target detection in complex UAV scenarios. 

 

III. MATERIAL AND METHODS 

3.1 Dataset 

The dataset used in this experiment is a publicly available garbage detection and recognition dataset, 

with data collected from a drone perspective. The dataset contains 772 aerial images taken at different heights 

and 3,718 COCO-style annotations. The data was collected in a variety of different scenarios. 

In the experiments of this paper no data augmentation is performed on the data and the original dataset 

is directly used for training and evaluation. The dataset is divided into training, validation, and test sets in the 

ratio of 7:2:1. 

3.2 Model Structure 

Network architecture diagram 

YOLOv8, the most popular algorithm in the YOLO family today, has shown significant advantages in 

the field of object detection, including excellent performance in detecting small objects from the perspective of 

UAV aerial photography. In this paper, we improve on the YOLOv8n network. The improved network structure 

is shown in Fig 1. Improvements are outlined with dotted lines. 

 

 
Fig 1. Improved YOLOv8 network structure 

 

Firstly, introduce ECA attention. The core of the ECA mechanism lies in adaptively learning the 

importance of each channel to precisely focus on the key feature information of the detection target. In the 

backbone network of traditional YOLO series algorithms, the contribution of each channel to feature extraction 

is considered equal, making it difficult to highlight effective features and ignore background noise interference 

when processing small targets. The ECA mechanism avoids complex global information calculations by 

considering local interaction information between channels, enabling dynamic adjustment of channel weights 

through a lightweight structure. Specifically, it uses fast one-dimensional convolutions to compute channel 

attention, allowing the network to quickly capture subtle features that are easily obscured by the background in 

drone aerial photography scenarios due to their small size, significantly enhancing the model's sensitivity to 

target features. 

Secondly, the 20×20 detection head was removed and replaced with a 160×160 resolution detection 

head. Since small objects occupy a low proportion of pixels in drone aerial images, traditional detection heads 

are unable to retain sufficient detail information for small object recognition after multiple layers of 

downsampling. The introduction of high-resolution detection heads can retain more original image details and 

support feature extraction at high resolution, thereby accurately capturing the subtle features of small objects. 

 

ECA Attention Mechanism 

The ECA attention module avoids dimension reduction and efficiently implements local cross-channel 

interactions through 1D convolution, thereby extracting cross-channel dependencies. The ECA attention module 

diagram is shown in Fig 2. 
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Fig 2. ECA Attention Structure Diagram 

 

The specific steps of the ECA attention mechanism are as follows: (1) Perform global average pooling 

operation on the input feature map; (2) Perform 1-dimensional convolution operation with a convolution kernel 

size of k, and obtain the weight w of each channel through the Sigmoid activation function; (3) Multiply the 

weights with the corresponding elements of the original input feature map, and then adjust the importance of 

each channel to obtain the final output feature map. It can be seen that the idea and operation of the ECA 

attention mechanism are extremely simple, and the impact on the processing speed of the network is small. 

 

Improving small target detection 

In the structural adjustment of the model neck, the focus is on enhancing the detection capability of 

small targets. The original YOLOv8 model is equipped with three sizes of detection heads, corresponding to 

feature map sizes of 20×20, 40×40, and 80×80, respectively, to realize the detection of different sizes of targets 

through the multi-scale feature mapping mechanism. The feature maps can capture different levels of image 

semantic information due to the difference in sensory fields. Given the characteristics that the UAV perspective 

images are mainly small targets and large targets are scarce, a new 160×160 resolution small target detection 

head is added, and the original 20×20 large target detection head is removed. 

The new small target detection head has two major advantages: first, the high-resolution feature map 

retains richer image detail information, which provides the basis for fine feature extraction of small targets; 

second, the smaller sensing field allows the network to focus on local detail features, avoiding the dilution of 

small target features due to the large sensing range. The detection head is deployed in the shallow region of the 

network, which can rely on the high-resolution feature advantage of the shallow network to realize the rapid 

localization and accurate identification of small targets. Through the above structural adjustment, the leakage 

and false detection of small targets can be effectively reduced, significantly improving the target detection 

performance in complex scenes. 

 

IV. EXPERIMENTSAND DISCUSSION 

4.1 Experimental Environment 

Table 1 shows the experimental equipment, experimental environment, and model parameters for this 

paper, using the SGD optimizer to train the network. 

 

Table 1. Experimental Setting 

Parameter Setting 

GPU NVIDIA GeForce RTX 4060 Ti 8 GB 

PyTorch 2.5.0 

Python 3.11 

Epochs 60 

Batch Size 16 
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4.2 Evaluation Metrics 

Mean Average Precision (mAP) has been chosen to evaluate the network performance.mAP can be 

calculated using the following formula:  

 
l

0
AP P( R )dR=   (1) 

 n N

1
mAP AP( n )

N 

=   (2) 

The P(R) curve provides a visual representation of precision performance at different recall rates. 

Average Precision (AP) provides insight into the overall performance of the model on individual categories. On 

the other hand, mAP is a global performance metric for comprehensively evaluating the model's performance 

across all categories. 

 

4.3 Experiment 

Fig 3 shows the training results of the improved YOLOv8n on the dataset. The rapid climb in early 

training (first 20 epochs or so) can be seen in the mAP50(B) curve and the mAP50-95(B) curve, indicating that 

the model learns to “roughly find the target” very quickly and that the base detection capability is built up 

quickly. 

 

 

Fig 3. Improve the model training curve 

 

Experiments have shown that the best model achieves a mAP50(B) value of 65.4% on the dataset 

compared to 62.2% for the original YOLOv8n network, a 3.2% improvement, and a mAP50-95(B) value of 

36.8% compared to 33.3% for the original network, a 3.5% improvement. These data illustrate the effectiveness 

of introducing the ECA attention mechanism and increasing the small-target detection head. Through the 

synergistic optimization of the ECA attention mechanism and the small-target detection head, the improved 

version of the YOLOv8n achieves a “two-dimensional performance breakthrough”: it strengthens the basic 

recognition ability of small targets (mAP50 enhancement), and overcomes the high accuracy detection technical 

bottleneck (mAP50-95 enhancement). This improvement not only verifies the suitability of the attention 

mechanism and multi-scale detection head for small target tasks but also provides a more efficient and accurate 

technical solution for target detection in aerial photography, remote sensing, and other “small target intensive” 

scenes. 

Fig 4 shows the P-R plot of the best model, the model is in the low recall stage (Recall ≈ 0~0.6): the 

Precision maintains a high level of 0.8~1.0 indicating that the model can strictly filter false alarms and almost no 

false positive prediction at low recall. 
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Fig 4. P-R plot of model classification 

 

The above data again verifies that the addition of the new small target detection head can better fuse 

shallow high-resolution features and make up for the original network's defect of “feature loss” for small targets. 

 

V. CONCLUSION 

In this paper, the detection performance of small targets in UAV aerial photography scenarios is 

significantly improved by introducing the ECA attention mechanism and high-resolution small target detection 

head in YOLOv8n. The experimental results show that the improved model mAP50 improves from 62.2% to 

65.4% of the original network of YOLOv8n, and mAP50-95 improves from 33.3% to 36.8%. This scheme 

effectively improves the detection accuracy of small targets under UAV aerial photography scenarios through 

the synergistic optimization of the attention mechanism and the multiscale detection head In the future, we can 

further explore the lightweight design and multitask fusion to In the future, lightweight design and multi-task 

fusion can be further explored to enhance the generalization ability in practical applications. 
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