

A Study on Anti-Picture Fuzzy Subalgebras in BG-algebra

Akula Anumala¹, Kolusu Madhavi², and Pikkili Sai Priya³

¹Department of Mathematics, Sir C.R. Reddy College of Engineering,
Eluru-534 007, Andhra Pradesh, India.

²Department of Mathematics, Sir C.R. Reddy College of Engineering,
Eluru-534 007, Andhra Pradesh, India.

³Department of Mathematics, Sir C.R. Reddy College of Engineering,
Eluru-534 007, Andhra Pradesh, India.
Corresponding Author: Akula Anumala.

ABSTRACT: In this article, the concept of an Anti-Picture Fuzzy BG-subalgebra in a BG-algebra is introduced and illustrated with a suitable example. Several fundamental properties of this structure are investigated. Furthermore, it is proved that the intersection of two Anti-Picture Fuzzy BG-subalgebras is again an Anti-Picture Fuzzy BG-subalgebra.

Date of Submission: 15-12-2025

Date of acceptance: 31-12-2025

I. INTRODUCTION

Fuzzy set theory was first presented by L. A. Zadeh [12] in 1965 as a tool for managing uncertainty in real-world situations. As an expansion of fuzzy set theory, Atanassov [4] proposed the concept of intuitionistic fuzzy sets in 1986. Cuong [5] extended the concepts of fuzzy sets and intuitionistic fuzzy sets in 2014 with the introduction of picture fuzzy sets. Kim and Kim proposed the idea of BG-algebras [8], which are generalisations of B-algebras. Ahn and Lee [2] later defined fuzzy subalgebras of BG-algebras in 2004. In near-rings, Kim and Yon established the idea of anti-fuzzy ideals [7]. By developing anti-fuzzy ideals of Γ -near-rings [11], Srinivas et al. expanded on this concept. Anti fuzzy BG-ideals in BG-algebras [6] were subsequently introduced by Muhammad Uzair Khan et al. Asif et al. presented picture fuzzy ideals of near-rings [3] in 2020. Zhang et al. proposed picture fuzzy filters of pseudo-BCI algebras [13] in 2017. Picture anti-fuzzy interior ideals of semigroups [1] were recently developed by Adak and Kamal. Furthermore, picture fuzzy subalgebras [9] and interval-valued picture fuzzy subalgebras [10] in BG-algebras were investigated by P. Naga Sriveni et al. In this paper, we present the notion of an anti-picture fuzzy BG-subalgebra and provide an appropriate example. We also discussed some of their properties.

II. MATERIAL AND METHODS

Definition 2.1 [8] A non-empty set \mathcal{E} with a constant 0 and a binary operation $*$ is said to be BG-Algebra if it satisfies the following axioms

1. $u * u = 0$
2. $u * 0 = 0$
3. $(u * v) * (0 * v) = u$ for all $u, v \in \mathcal{E}$.

Definition 2.2 [8] A non-empty subset \mathcal{J} of a BG-algebra \mathcal{E} is called a subalgebra of \mathcal{E} if $u * v \in \mathcal{J}$ for all $u, v \in \mathcal{J}$.

Definition 2.3 [13] Let \mathcal{E} be the collection of objects. Then a fuzzy set \mathcal{F} in \mathcal{E} is defined as

$$\mathcal{F} = \{(u, P_1(u)) \mid u \in \mathcal{E}\},$$

where $P_1(u)$ is called the membership degree of u in \mathcal{F} and $0 \leq P_1(u) \leq 1$.

Definition 2.5 [2] A fuzzy set \mathcal{F} is said to be a fuzzy subalgebra of \mathcal{E} if

$$P_1(u * v) \geq \min\{P_1(u), P_1(v)\} \text{ for all } u, v \in \mathcal{E}.$$

Definition 2.6 [6] A fuzzy set \mathcal{F} is said to be an anti-fuzzy subalgebra of \mathcal{E} if
 $P_1(u * v) \leq \max\{P_1(u), P_1(v)\}$ for all $u, v \in \mathcal{E}$.

Definition 2.6 [5] Let \mathcal{E} be a non-empty and finite set. A Picture fuzzy set in \mathcal{E} is defined by

$$P = \{(u, P_1(u), P_2(u), P_3(u)) | u \in \mathcal{E}\}$$

Where $P_1: \mathcal{E} \rightarrow [0,1]$, $P_2: \mathcal{E} \rightarrow [0,1]$ and $P_3: \mathcal{E} \rightarrow [0,1]$ positive, neutral, and negative membership functions respectively, and $0 \leq P_1(u) + P_2(u) + P_3(u) \leq 1$. Furthermore, $H(u) = 1 - P_1(u) - P_2(u) - P_3(u)$ is the refusal membership function.

Definition 2.7. [9] A Picture fuzzy set $P = (P_1, P_2, P_3)$ in \mathcal{E} is called a Picture Fuzzy BG-Subalgebra if it satisfies the following conditions

$$(PFBG-SA 1) P_1(u * v) \geq \min\{P_1(u), P_1(v)\}$$

$$(PFBG-SA 2) P_2(u * v) \geq \min\{P_2(u), P_2(v)\}$$

$$(PFBG-SA 3) P_3(u * v) \leq \max\{P_3(u), P_3(v)\}$$
 for all $u, v \in \mathcal{E}$.

Definition 2.8. [10] An interval valued picture fuzzy set $\bar{P} = (P_1^I, P_2^I, P_3^I)$ in \mathcal{E} is called an interval valued picture fuzzy BG-Subalgebra if it satisfies

$$(IvPFBG-SA 1) P_1^I(u * v) \gg r\min\{P_1^I(u), P_1^I(v)\}$$

$$(IvPFBG-SA 2) P_2^I(u * v) \gg r\min\{P_2^I(u), P_2^I(v)\}$$

$$(IvPFBG-SA 3) P_3^I(u * v) \ll r\max\{P_3^I(u), P_3^I(v)\}$$
 for all $u, v \in \mathcal{E}$.

III. ANTI PICTURE FUZZY BG-SUBALGEBRA

Definition 3.1. A Picture fuzzy set $P = (P_1, P_2, P_3)$ in \mathcal{E} is called an Anti-Picture Fuzzy BG-Subalgebra if it satisfies the following conditions

$$(APFBG-SA I) P_1(u * v) \leq \max\{P_1(u), P_1(v)\}$$

$$(APFBG-SA II) P_2(u * v) \leq \max\{P_2(u), P_2(v)\}$$

$$(APFBG-SA II) P_3(u * v) \geq \min\{P_3(u), P_3(v)\}$$
 for all $u, v \in \mathcal{E}$.

Definition 3.2. Consider a set $\mathcal{E} = \{0, \epsilon_1, \epsilon_2, \epsilon_3, \epsilon_4, \epsilon_5\}$ with the binary operation ‘*’ which is given in table.1

Table:1

*	0	ϵ_1	ϵ_2	ϵ_3	ϵ_4	ϵ_5
0	0	ϵ_5	ϵ_4	ϵ_3	ϵ_2	ϵ_1
ϵ_1	ϵ_1	0	ϵ_5	ϵ_4	ϵ_3	ϵ_2
ϵ_2	ϵ_2	ϵ_1	0	ϵ_5	ϵ_4	ϵ_3
ϵ_3	ϵ_3	ϵ_2	ϵ_1	0	ϵ_5	ϵ_4
ϵ_4	ϵ_4	ϵ_3	ϵ_2	ϵ_1	0	ϵ_5
ϵ_5	ϵ_5	ϵ_4	ϵ_3	ϵ_2	ϵ_1	0

Then $(\mathcal{E}; *, 0)$ is a BG-algebra. Let $P = (P_1, P_2, P_3)$ be a Picture fuzzy set in \mathcal{E} defined by table.2

Table:2

\mathcal{E}	0	ϵ_1	ϵ_2	ϵ_3	ϵ_4	ϵ_5
$P_1(u)$	0.21	0.35	0.21	0.35	0.21	0.35
$P_2(u)$	0.13	0.52	0.13	0.52	0.13	0.52
$P_3(u)$	0.71	0.45	0.71	0.45	0.71	0.45

It is routine to verify that $P = (P_1, P_2, P_3)$ is an Anti-Picture Fuzzy BG-Subalgebra of \mathcal{E} .

Proposition 3.3. If $P = (P_1, P_2, P_3)$ in \mathcal{E} is an Anti-Picture Fuzzy BG-Subalgebra in \mathcal{E} , then for all $u \in \mathcal{E}$ $P_1(0) \leq P_1(u)$, $P_2(0) \leq P_2(u)$ and $P_3(0) \geq P_3(u)$.

Proof: Let $u \in \mathcal{E}$. Then

$$P_1(0) = P_1(u * u) \leq \max\{P_1(u), P_1(u)\} = P_1(u)$$

$$\begin{aligned}
&\Rightarrow P_1(0) \leq P_1(u), \\
P_2(0) &= P_2(u * u) \leq \max\{P_2(u), P_2(u)\} = P_2(u) \\
&\Rightarrow P_2(0) \leq P_2(u), \\
P_3(0) &= P_3(u * u) \geq \max\{P_3(u), P_3(u)\} = P_3(u) \\
&\Rightarrow P_3(0) \geq P_3(u).
\end{aligned}$$

Theorem 3.4. Let $P = (P_1, P_2, P_3)$ be a Anti Picture Fuzzy BG-Subalgebra of \mathcal{E} . If there exists a sequence $\{u_n\}$ in \mathcal{E} such that $\lim_{n \rightarrow \infty} P_1(u_n) = 1$, $\lim_{n \rightarrow \infty} P_2(u_n) = 1$ and $\lim_{n \rightarrow \infty} P_3(u_n) = 0$, then $P_1(0) = 0$, $P_2(0) = 0$ and $P_3(0) = 1$.

Proof: Using the proposition 3.3, we know that $P_1(0) \leq P_1(u_n)$, $P_2(0) \leq P_2(u_n)$ and $P_3(0) \geq P_3(u_n)$ for every positive integer n . Note that

$$\begin{aligned}
0 &\leq P_1(0) \leq \lim_{n \rightarrow \infty} P_1(u_n) = 0 \\
0 &\leq P_2(0) \leq \lim_{n \rightarrow \infty} P_2(u_n) = 0 \\
1 &\geq P_3(0) \geq \lim_{n \rightarrow \infty} P_3(u_n) = 1
\end{aligned}$$

Therefore $P_1(0) = 0$, $P_2(0) = 0$ and $P_3(0) = 1$.

Proposition 3.5. If a Picture fuzzy set $P = (P_1, P_2, P_3)$ in \mathcal{E} be a Anti Picture Fuzzy BG-Subalgebra, then for all $u \in \mathcal{E}$ $P_1(0 * u) \leq P_1(u)$, $P_2(0 * u) \leq P_2(u)$ and $P_3(0 * u) \geq P_3(u)$.

Proof: For all $u \in \mathcal{E}$, we have

$$\begin{aligned}
P_1(0 * u) &\leq \max\{P_1(0), P_1(u)\} = \max\{P_1(u * u), P_1(u)\} \\
&\leq \max\{\max\{P_1(u), P_1(u)\}, P_1(u)\} = P_1(u) \\
&\Rightarrow P_1(0 * u) \leq P_1(u), \\
P_2(0 * u) &\leq \max\{P_2(0), P_2(u)\} = \max\{P_2(u * u), P_2(u)\} \\
&\leq \max\{\max\{P_2(u), P_2(u)\}, P_2(u)\} = P_2(u) \\
&\Rightarrow P_2(0 * u) \leq P_2(u), \\
P_3(0 * u) &\geq \min\{P_3(0), P_3(u)\} = \min\{P_3(u * u), P_3(u)\} \\
&\geq \min\{\min\{P_3(u), P_3(u)\}, P_3(u)\} = P_3(u) \\
&\Rightarrow P_3(0 * u) \geq P_3(u).
\end{aligned}$$

Definition 3.6. Let $P_1 = (P_{11}, P_{21}, P_{31})$ and $P_2 = (P_{12}, P_{22}, P_{32})$ be two Picture Fuzzy Sets, then the intersection is defined as

$$P_1 \cap P_2 = \left\{ \left(u, \max \left(P_{11}(u), P_{12}(u) \right), \max \left(P_{21}(u), P_{22}(u) \right), \min \left(P_{31}(u), P_{32}(u) \right) \right) : u \in \mathcal{E} \right\}$$

Theorem 3.7. Let P_1 and P_2 be two Anti Picture Fuzzy BG-Subalgebras of \mathcal{E} , then $P_1 \cap P_2$ is a Anti Picture Fuzzy BG-Subalgebra of \mathcal{E} .

Proof: Let $u, v \in P_1 \cap P_2$, then $u, v \in P_1$ and $u, v \in P_2$.

$$\begin{aligned}
P_{1P_1 \cap P_2}(u * v) &= \max \left\{ P_{1P_1}(u * v), P_{1P_2}(u * v) \right\} \\
&\leq \max \left\{ \max \left\{ P_{1P_1}(u), P_{1P_1}(v) \right\}, \max \left\{ P_{1P_2}(u), P_{1P_2}(v) \right\} \right\} \\
&= \max \left\{ \max \left\{ P_{1P_1}(u), P_{1P_2}(u) \right\}, \max \left\{ P_{1P_1}(v), P_{1P_2}(v) \right\} \right\} \\
&= \max \left\{ P_{1P_1 \cap P_2}(u), P_{1P_1 \cap P_2}(v) \right\}
\end{aligned}$$

$$\begin{aligned}
P_{2P_1 \cap P_2}(u * v) &= \max \left\{ P_{2P_1}(u * v), P_{2P_2}(u * v) \right\} \\
&\leq \max \left\{ \max \left\{ P_{2P_1}(u), P_{2P_1}(v) \right\}, \max \left\{ P_{2P_2}(u), P_{2P_2}(v) \right\} \right\}
\end{aligned}$$

$$\begin{aligned}
 &= \max \left\{ \max \{P_{2P_1}(u), P_{2P_2}(u)\}, \max \{P_{2P_1}(v), P_{2P_2}(v)\} \right\} \\
 &= \max \{P_{2P_1 \cap P_2}(u), P_{2P_1 \cap P_2}(v)\},
 \end{aligned}$$

$$\begin{aligned}
 P_{3P_1 \cap P_2}(u * v) &= \min \{P_{3P_1}(u * v), P_{3P_2}(u * v)\} \\
 &\geq \min \left\{ \min \{P_{3P_1}(u), P_{3P_1}(v)\}, \min \{P_{3P_2}(u), P_{3P_2}(v)\} \right\} \\
 &= \min \left\{ \min \{P_{3P_1}(u), P_{3P_2}(u)\}, \min \{P_{3P_1}(v), P_{3P_2}(v)\} \right\} \\
 &= \min \{P_{3P_1 \cap P_2}(u), P_{3P_1 \cap P_2}(v)\}.
 \end{aligned}$$

Hence $P_1 \cap P_2$ is a Anti Picture Fuzzy BG-Subalgebra of \mathcal{E} . Theorem 3.7. can be generalizes as follows.

Theorem 3.8. Let $\{P_i : i = 1, 2, 3, \dots\}$ be a family of Anti Picture Fuzzy BG-Subalgebra of \mathcal{E} . Then $\cap P_i$ is also an Anti Picture Fuzzy BG-Subalgebra of \mathcal{E} .

Theorem 3.9. A Picture Fuzzy Set $P = (P_1, P_2, P_3)$ is a Anti Picture Fuzzy BG-Subalgebra of \mathcal{E} if and only if the fuzzy sets P_1, P_2 and P_3^c are anti fuzzy subalgebra of \mathcal{E} .

Proof: Let $P = (P_1, P_2, P_3)$ be a Anti Picture Fuzzy BG-Subalgebra of \mathcal{E} then we have

$$\begin{aligned}
 P_1(u * v) &\leq \max\{P_1(u), P_1(v)\}, \\
 P_2(u * v) &\leq \max\{P_2(u), P_2(v)\} \text{ and} \\
 P_3(u * v) &\geq \min\{P_3(u), P_3(v)\} \text{ for all } u, v \in \mathcal{E}.
 \end{aligned}$$

Clearly P_1, P_2 are anti fuzzy subalgebra of \mathcal{E} . Now

$$\begin{aligned}
 1 - P_3(u * v) &\leq 1 - \min\{P_3(u), P_3(v)\} \\
 \Rightarrow P_3^c(u * v) &\leq \max\{1 - P_3(u), 1 - P_3(v)\} = \max\{P_3^c(u), P_3^c(v)\}.
 \end{aligned}$$

Hence P_3^c is an anti-fuzzy subalgebra of \mathcal{E} .

Conversely, assume that P_1, P_2 and P_3^c are anti fuzzy subalgebra of \mathcal{E} .

For every $u, v \in \mathcal{E}$ we have

$$\begin{aligned}
 P_1(u * v) &\leq \max\{P_1(u), P_1(v)\}, \\
 P_2(u * v) &\leq \max\{P_2(u), P_2(v)\} \\
 P_3^c(u * v) &\leq \max\{P_3^c(u), P_3^c(v)\} \\
 \Rightarrow 1 - P_3^c(u * v) &\geq 1 - \max\{P_3^c(u), P_3^c(v)\} = \min\{1 - P_3^c(u), 1 - P_3^c(v)\} \\
 \Rightarrow P_3(u * v) &\geq \min\{P_3(u), P_3(v)\}.
 \end{aligned}$$

Hence $P = (P_1, P_2, P_3)$ is an anti picture fuzzy BG-Subalgebra of \mathcal{E} .

Definition 3.10. Let $P = (P_1, P_2, P_3)$ is a Picture fuzzy set defined on \mathcal{E} .

The operator $\sqcap P$ and $\sqcup P$ are defined as $\sqcap P = (P_1, P_2, P_1^c)$ and $\sqcup P = (P_3^c, P_2, P_3)$ respectively.

Theorem 3.11. If $P = (P_1, P_2, P_3)$ be an Anti-Picture Fuzzy BG-Subalgebra of \mathcal{E} then

- (i) $\sqcap P$
- (ii) $\sqcup P$ both are Anti-Picture Fuzzy BG-Subalgebras.

Proof: (i) It is sufficient to show that P_1^c satisfies the condition (APFBG-SA III).

Let $u, v \in \mathcal{E}$ then we have

$$\begin{aligned}
 P_1(u * v) &\leq \max\{P_1(u), P_1(v)\} \\
 \Rightarrow 1 - P_1(u * v) &\geq 1 - \max\{P_1(u), P_1(v)\} \\
 \Rightarrow P_1^c(u * v) &\geq \min\{1 - P_1(u), 1 - P_1(v)\} \\
 &= \min\{P_1^c(u), P_1^c(v)\}.
 \end{aligned}$$

Hence $\Gamma P = (P_1, P_2, P_1^c)$ is an Anti-Picture Fuzzy BG-Subalgebra of \mathcal{E} .

(ii) It is sufficient to show that P_3^c satisfies the condition (APFBG-SA I).

Let $u, v \in \mathcal{E}$ then we have

$$\begin{aligned} P_3(u * v) &\geq \min\{P_3(u), P_3(v)\} \\ \Rightarrow 1 - P_3(u * v) &\leq 1 - \min\{P_3(u), P_3(v)\} \\ \Rightarrow P_3^c(u * v) &\leq \max\{1 - P_3(u), 1 - P_3(v)\} \\ \Rightarrow P_3^c(u * v) &\leq \max\{P_3^c(u), P_3^c(v)\}. \end{aligned}$$

REFERENCES

- [1]. Adak, A.K. and Kamal, N., 2025. Picture Anti-Fuzzy Interior Ideals of Semi-groups. *Journal of Fuzzy Extension and Applications. J. Fuzzy. Ext. Appl.*, 1:1, 50–58.
- [2]. Ahn, S. S. and Lee, H. D., (2004), Fuzzy subalgebras of BG-algebras, *Commun. Korean Math. Soc.* 19(2), 243-251.
- [3]. Asif, A., Aydi, H., Arshad, M., Rehman, A. and Tariq, U., 2020. Picture Fuzzy Ideals of Near-Rings. *Journal of Mathematics*, 1, p.8857459.
- [4]. Atanassov, K. T., (1986), Intuitionistic fuzzy sets, *Fuzzy Sets Syst.*, 20(1), 87–96, doi: [https://doi.org/10.1016/S0165-0114\(86\)80034-3](https://doi.org/10.1016/S0165-0114(86)80034-3).
- [5]. Cuong, B., 2013, Picture fuzzy sets-first results. Part 1. In Proceedings of the Third World Congress on Information and Communication WICT'2013, Hanoi, Vietnam, 1–6.
- [6]. Khan, M.U., Khan, R., Shah, S.I.A. and Luqman, M., 2019. Anti Fuzzy BG-ideals in BG-algebra. *Journal of New Theory*, 27, pp.1-10.
- [7]. Kim K .H and Yon Y. H., 2005 Oct 21, On anti fuzzy ideals in near-rings. *Iranian Journal of Fuzzy Systems*. 2:2, 71-80.
- [8]. Kim, C. B. and Kim, H. S., 2008, On BG-algebras, *Demonstratio Mathematica*, 41, 497-505.
- [9]. Naga Sriveni, P. and Parameswari, Parameswari, K. L., 2024, "Picture Fuzzy BG-Subalgebra in BG-algebra," *International Journal of Advance Research and Innovative Ideas in Education*, 10:5, 250-255, https://ijariie.com/AdminUploadPdf/Picture_Fuzzy_BG_Subalgebra_in_BG_algebra_ijariie24932.pdf?srsltid=AfmBOoqi9Kf4yLA d9e5MV76ppq_0Rty-G4zxslhkhizKzlJyzaEG8iSa
- [10]. Parameswari, K. L., Anusha, D., and Naga Sriveni, P., 2025, Interval-Valued Picture Fuzzy BG-Subalgebra in BG-algebra, *International journal of Multidisciplinary research in Science, Engineering and Technology*, 8(8), August 2025 11914—11918 https://www.ijmrset.com/upload/12_Interval-Valued%20Picture%20Fuzzy%20BG-Subalgebra%20in%20BG-algebraC.pdf
- [11]. Srinivas, T., Nagaiah, T. and Swamy, P.N., 2012. Anti fuzzy ideals of Γ -near-rings. *Ann. Fuzzy Math. Inform.*, 3(2), pp.255-266.
- [12]. Zadeh, L. A., (1965), Fuzzy sets, *Inform. and Control*, 8, 338-353.
- [13]. Zhang, X., Bo, C. and Park, C., 2017. Picture fuzzy filters of pseudo-BCI algebras. In *Fuzzy Systems and Data Mining III* (pp. 254-260). IOS Press.