International Journal of Engineering Research and Development
e- ISSN: 2278-067X, p-ISSN: 2278-800X, www.ijerd.com
Volume 21, Issue 10 (October 2025), PP 96-104

A Smart Web Application for Agroecological Monitoring
Using Multi-Agent IoT, Semantic Web, and Edge-Al

Ebtehal Akeel Hamed'

! College of Physical Education and Sport Sciences, Al Qasim Green University, Babylon51013, Iraq
Corresponding Author: ebtehal82@uoqasim.edu.iq

ABSTRACT

Multi-agent 1oT architecture for agroecological monitoring using semantic web protocols and Edge-Al codices
provides real-time, predictive, and scalable environmental intelligence. The suggested method turns sensor data
into useful insights via a multi-stage pipeline. Start with dependable data collection and editing. Normalization
and dimensionality reduction handle noise, missing entries, and uneven sampling. Principal component analysis
preserves the most useful traits. There are several ways to find abnormalities. We employ reconstruction-based
error criteria and distance measurements to detect them. Ontology-driven mappings allow distributed loT agents
to integrate data into a knowledge base. We call this semantic interoperability. Edge-Al codices speed up local
processing and semantic query execution, enabling faster decision-making. Recurrent structures that blend
abnormality ratings and prediction embeddings capture temporal interdependence. These become probabilistic
outputs that softmax-based layers can understand. A rigorous test reveals that the framework is better than other
cutting-edge methods at accurately obtaining data, quickly normalizing it, maintaining features, discovering
anomalies, and facilitating semantic interchange. The system now has higher scalability, computing efficiency,
energy optimization, real-time processing, and sound decisions. This makes it better for dynamic farming with
limited resources. Intelligent agroecological system monitoring is dependable, versatile, and long-lasting with
the integrated framework. It aids environmental management and ecological prediction in complex ecosystems.
Keywords- Agroecology, Anomaly detection, Edge-Al, Heterogeneous sensors, loT, Multi-agent systems,
Predictive modeling, Semantic interoperability, Temporal embeddings, Wireless sensor networks, web
application.
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I. INTRODUCTION

The merging of the semantic web, artificial intelligence (AI), and the Internet of Things (IoT) has led to
a new way of doing environmental research and farming [1]. Agroecological monitoring, which means closely
watching and judging things like soil, water, crops, and the ecosystem around them, is essential for responsible
resource management and sustainable farming. However, ongoing problems prevent these technologies from
reaching their full potential [2]. There are a lot of challenges in this area, such as not having clear communication
protocols, not treating agricultural data correctly, and the fact that not all [oT devices are the same. Interoperable
multi-agent [oT frameworks that include semantic web protocols and edge-Al codices into devices possess the
capability to address these challenges. This integration lets devices talk to one another, learn new things, and help
agroecological systems make choices in real time. This research presents an efficient approach for the concurrent
operation of many Internet of Things (IoT) devices used in agriculture [3]. It does this by using semantic
technologies to make communication more consistent and adding edge-based Al codices for fast, distributed
analysis. This improves long-term monitoring of agriculture and the environment while also helping the world
reach its goals for climate resilience, biodiversity conservation, and efficient food systems. In recent years, low-
power sensors, unmanned aerial vehicles (UAVs), and wireless sensor networks have significantly improved
precision farming, livestock monitoring, smart irrigation, and soil assessment [4-7]. This work introduces (i) a
semantically aligned representation pipeline that couples ontology-aware whitening with kernelized anomaly
scoring; (ii) an edge-ready temporal encoder (GRU + attention) for low-latency streaming decisions; (iii) a
standards-compliant interoperability layer that unifies SOSA/SSN knowledge graphs with SPARQL query paths;
(iv) a hybrid networking stack characterized by high PDR and low p95 latency alongside measured SPARQL
performance; (v) a calibration-aware inference routine reporting ECE/Brier for auditability; (vi) a privacy- and
security-conscious design combining differential privacy and zero-trust controls; and (vii) a scalability profile that
identifies the accuracy/latency knee for capacity planning.
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II. RELATED WORKS

The linked study section tests approaches to strengthen interoperable multi-agent IoT for agroecological
tracking. Semantic web protocols and Edge-Al codices are used. Ontology-driven semantics Interoperability
ensures that all devices share structured data to communicate and understand environmental signals. Multi-agent
coordination frameworks increase agricultural distributed decision-making and joint sensing by ensuring agents
work smoothly even when things change. Process data closer to its source with Edge-Al Inference Optimization to
reduce latency [8-9]. This provides real-time data for crop health monitoring and irrigation. Semantic Web Service
Integration links IoT middleware to semantic protocols for cross-platform data sharing. Distributed ledger-based
trust models allow stakeholders to securely transfer data. This is crucial for agroecological supply chain tracking.
Federated edge learning mechanisms train AI models without centralized data. Privacy is protected, and the system
is more scalable and versatile. As sensor vocabularies evolve, adaptive ontology alignment protocols actively align
ontological structures to keep the system compliant [10-12]. Knowledge Graph-Driven Decision Systems are
special because they enable complicated, situation-specific thinking and decision-making. This helps identify
environmental concerns and boost crop yields. IoT Middleware for Heterogeneous Devices lets sensors work
together effortlessly. This feature enables adding sensors and improving business efficiency more easily. Finally,
the context-aware semantic rule Real-time environmental rules enable engine adaptation. Predictions improve with
changing field conditions. Performance evaluations reveal that knowledge graph-based systems outperform others
in accuracy, scalability, and reasoning capacity. However, edge-intelligent methods like Edge-Al Inference
Optimization and Federated Edge Learning adapt better. Distributed ledgers and other trust-centric systems are
reliable yet energy-intensive and slow. Middleware and semantic integration balance interoperability and system
performance [13-15]. These methodologies demonstrate that semantic reasoning and edge-intelligent architectures
improve agroecological IoT monitoring resilience, scalability, and adaptability. This makes them crucial to smart,
sustainable farming systems.

III. PROPOSED METHODOLOGY

This indicates that there is a single pipeline that can do real-time agroecological monitoring on a variety
of multi-agent [oT networks. To start, we utilize a modality-aware, weighted normalization approach on the raw
data. This method helps to account for changes in noise characteristics, sensor size, and sampling rate. This way,
we guarantee that each sensor will contribute equally. Using a variance-preserving projection (PCA/eigen
decomposition) to compress the normalized streams even further makes the features light and useful. You may
make strong anomaly scores that are sensitive to changes in microclimates by employing spectral embedding and
kernelized similarity [16—18]. We employ an ontology-aligned whitening strategy to ensure that the meaning is the
same across all devices and sites. This method makes it possible for different agents to work together by adding a
knowledge-graph structure. Lightweight attention and edge-level temporal encoding (GRU) continually record data
within the limitations of the device's power and latency. Lastly, calibrated probabilistic inference provides warnings
that are properly calibrated by improving findings via regularization and semantic limitations [19]. The system
functions effectively and has the potential to expand. Representation learning, signal processing, and semantics
enable consistent use of this system on a large scale.

First, a weighted z-score has to be used to equalize the various modes. The raw data from various agent
IoT networks could be variable in size, sample rate, and noise level. A weighted z-score normalization approach is
used to keep data from multiple sources consistent and verify that different sensor modalities add up to the same

amount.
Lot (st

Weighted z-score normalization per modality $m$ to stabilize scale/noise across multi-agent IoT sensors. Here, m
denotes modality (e.g., soil, climate, canopy), amja,, jm(m)u(m)m(m) is the mean for modality mmm.
Step 2: Eigen-Decomposition for PCA Transformation

After normalization, high-dimensional data is projected into a variance-preserving latent subspace using eigen-
decomposition of the covariance matrix. This enables dimensionality reduction while retaining global
interdependencies among sensors.

(1

«T ¢ « wTcw
Z=1W X, W =argmaxy -, 2)
C == Bl G — w0 — W’ (€)
CA projection via Rayleigh-quotient eigen-decomposition preserving variance and cross-sensor dependencies. }

Here, C is the covariance matrix, and IN * W*IN * contains eigenvectors corresponding to the top eigenvalues.

I.Step 3: Kernelized Anomaly Score with Spectral Embedding
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To capture nonlinear correlations across modalities, anomaly scores are derived using Gaussian kernels and spectral
embedding. This allows subtle deviations in agroecological conditions (e.g., microclimate drift) to be detected.

zlz;
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Hybrid anomaly score combining cosine dissimilarity with Gaussian-kernel similarity for nonlinear deviations. This
combines cosine dissimilarity with Gaussian kernel similarity, yielding a robust anomaly score si.
Step 4: Probabilistic Decision with Regularized Logistic Model

Finally, decisions are refined by mapping anomaly scores into probabilities using a regularized logistic
regression. This prevents overfitting while incorporating both anomaly signals and prior knowledge.

P(y=11x;)=0c\big(W'F; + b\big) (5
L =—-3¥, \Big[y;logP; + (1 — y;) log\ big(1 — Py\big)\Big| + A\IWertw\rVert? (6)
Regularized logistic decision and training objective to map fused features to calibrated anomaly probabilities.

Here,s(-)a(-)o () is the sigmoid activation, FFF the fused features, and L\mathcal{L}L the regularized loss
combining prediction accuracy with L2 penalty. The method then integrates semantic web protocols by mapping
local sensor features to ontology-driven concepts. This enables cross-agent interoperability, allowing
heterogeneous devices to communicate seamlessly. A structural similarity index is calculated across agents,
capturing semantic alignment and ensuring that IoT nodes contribute consistently to a shared knowledge base [20-
21]. Edge-Al codices further refine this process by balancing local computation with semantic query processing,
reducing latency in field deployments. The final fused representation synthesizes multi-agent interactions, semantic
mappings, and anomaly scores, yielding a scalable and interoperable monitoring framework. This ensures robust
decision-making in agroecological environments while supporting real-time, resource-efficient analytics for
sustainable agricultural practices.
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Fig.1.Proposed interoperable multi-agent IoT framework for agroecological monitoring, integrating data
normalization, PCA, anomaly detection, semantic mapping, and edge-Al fusion for real-time decision support.

Figure 1 illustrates the complete process of multi-agent loT-based agroecological monitoring. The system
begins with raw sensor data collection, which is normalized to remove bias and aggregated for unified processing.
Dimensionality reduction through PCA ensures efficient feature extraction, followed by reconstruction error
analysis for anomaly detection. Semantic mapping aligns sensor outputs with ontology-driven knowledge bases,
while structural similarity measures consistency across distributed agents [22-24]. Edge-Al codices optimize
computation between local devices and cloud services. Finally, fused features are generated, enabling robust
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monitoring and decision-making. This streamlined workflow ensures interoperability, scalability, and real-time
analysis in agroecological environments.
Step 5 — Semantic whitening of features (ontology-aligned)
Whitening removes cross-sensor covariance; the semantic matrix SSS injects knowledge-graph structure so
downstream temporal models operate on isotropic, semantically consistent embeddings.
X = SA\UTe2yT\pig(X — u1T\big), with C =\tfraclN — 1\big(X — u1"\big)\big(X —

u1Mbig)" = VAVT 7)
Step 6 — Edge temporal encoding with gated recurrence

On-device temporal inference uses a GRU-style update to capture nonstationary field dynamics (e.g., diurnal
cycles, irrigation shocks). Reset and update gates may be the best choice for streaming IoT because, when used
adaptively with memory, they may provide stable concealed states with less latency.

he =1 —2) O hey + 2, O tanh \bigWx; + U (r; © he_y) + b\big), z; = oW, + U hey), 1 =
oW % + Uphe—y) (®)

Because ABCD is a parallelogram, the two sets of opposite sides are parallel to each other. This means that
angles A and C are the same size. Angle C must also be 70 degrees, since angle A is 70 degrees. Gated repetition
is a critical part of edge GRU dynamics. It mixes information that has already been learned with fresh input to
quickly and accurately encode time with a minimum latency. We build a context vector for applications like stress
detection that gives the request-corresponding time steps the highest weight. We can obtain the score and have the
weights sum up to one with only one computation. A short and accurate summary is made to make it easier to
classify.

T exp(qThy)

1T expaTho ©)
Step 7 — Probabilistic inference with semantic regularization
A calibrated softmax is used to generate the final set of predictions. These predictions are trained using a loss
that includes weight decay and cross-entropy, as well as a semantic constraint that maintains the alignment matrix
close to orthonormality to prevent distortion of the geometry and collapse.

§ = softmax(Wyc + b)), £L=—X, Y5, y;logy, + N\WertWprVert? + p\IVertSTS — I\rVert
(10)

Probabilistic inference with cross-entropy, weight decay, and semantic orthogonality regularization for calibrated
decisions.

Data are standardized for scale consistency [25], then compressed via PCA (eigendecomposition) to retain
maximal variance. Distance-based metrics produce per-sample anomaly scores, fused across similarities for
robustness. A thresholded, loss-optimized decision boundary balances false positives/negatives, yielding an
efficient, real-time detector of subtle distribution shifts.
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Fig.2. End-to-End Workflow from Normalized Features to Refined Anomaly Model
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Figure 2 shows the full pipeline used after data ingestion. First, features are normalized and a covariance
matrix is computed to prepare the data. The workflow then projects the data, performs eigen decomposition, and
selects the top eigenvectors for a compact representation. Inference follows by computing a distance-based score
and converting it into an anomaly score, which is compared against a threshold. The final row depicts learning and
decision: score fusion balances evidence and uncertainty, the loss function is optimized and the decision boundary
updated, leading to classification (normal/anomaly), result generation, and output of the refined model. We
consolidate temporal evidence by attending over all hidden states and fusing the resulting context with the current
state via a residual path; a learned gate then blends freshly refined features with temporal memory to yield a stable
edge-ready representation.

v, = 6!\Big (y \operatornameReLU'\big (Wf\big (ht + Y1 tfraced P ed'h hi\big) +

bp\big) + (1 =) hyBig) (11)
Attention-pooled context fused residually with the current state and gated to yield a stabilized representation. We
encode the stabilized state into a latent space, reconstruct to gauge consistency, and classify to gauge confidence; a
single anomaly decision combines reconstruction error and entropy-based uncertainty, capturing both fidelity and
ambiguity in one thresholded criterion.
d = 1\Big{8 \big|x —\big(W, tanh(z,) + b,\big)\big|} + (1 — 8)\Big(— X, p.logpn Big) (12)
Unified variational decision thresholds a weighted sum of reconstruction error and predictive uncertainty.
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Fig.3. Temporal Modeling and Optimization Workflow for Real-Time Decision Support

Figure 3 outlines the runtime and training loop after refined features are available. Temporal embeddings
are generated and passed through a sequential model, hidden states are updated, an anomaly score is integrated, and
sequence features are refined. A probabilistic layer produces class probabilities while reconstruction and
classification losses are computed, weighted, and minimized by gradient descent. The loop concludes by updating
parameters, emitting the predicted label, and preparing the model for deployment in real-time decision support.

IV. RESULT
The proposed interoperable multi-agent IoT architecture with semantic web protocols and Edge-Al codices
outperforms current agroecological monitoring systems in several respects. The testing begins with preprocessing
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and data collecting, where the framework displays its accuracy and capacity to read sensors in various field
conditions. The speed of normalization has also increased.

TABLE 1. Overview of Latest Methods for Edge-Al Enabled Agroecological Monitoring

Method Core Idea Hardware/Stack Model FLOPs/Inf | Use Case
Size (MB) | (MFLOPs)

TinyML-CNN (quantized) On-node inference with | ARM M4 / CMSIS- | 0.85 32 Leaf disease, on-sensor vision
8-bit quant. NN

EdgeTPU-Transformer Edge transformer for | Coral TPU 6.4 45.0 Stress sounds & canopy vision
audio+vision

GNN-SensorGraph Graph neural net on |Jetson Nano 3.1 18.5 Soil-moisture + climate fusion
sensor network

Neuro-Symbolic (KG+DL) KG reasoning + DL |x86 Edge + RDEF store | 4.8 22.0 Rule-enforced anomaly flags
classifier

FedAvg+DP Federated learning with | Heterogeneous edge | — — Privacy-preserving retraining
DP (¢)

Semantic Agents (SOSA/SSN) | Ontology-driven multi- | MQTT + CoAP +|— — Interoperable orchestration
agent RDF

Table 1 summarizes six state-of-the-art methods applied in agroecological IoT and Edge-Al systems.
TinyML-CNN provides lightweight, quantized inference on ARM-based microcontrollers, suitable for on-sensor
vision tasks like leaf disease detection. EdgeTPU-Transformers leverage Coral TPUs to process multimodal audio—
vision data with higher model complexity. GNN-SensorGraph applies graph neural networks to fuse soil and
climate data, optimized for platforms like Jetson Nano. Neuro-Symbolic approaches combine knowledge graph
reasoning with deep learning to enforce rule-based anomaly detection. FedAvg+DP introduces federated learning
with differential privacy, enabling secure retraining across heterogeneous nodes. Finally, Semantic Agents
(SOSA/SSN) adopt ontology-driven orchestration for interoperable, standards-based communication. Together,
these methods represent complementary advances in scalability, interoperability, and sustainability for
agroecological monitoring.
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Fig.4. Temporal Stability of F1-Score with Annotated Irrigation and Rain Events (Jan—Feb 2025)

Figure 4 shows daily F1 (orange points) and a 7-day moving average (blue line) across January—February
2025. Performance is steady near 0.88 early January, dips to ~0.86 after the irrigation start and heavy rain (mid-
Jan), rebounds toward late January, then shows brief declines around an irrigation fault (late Jan) and a rainstorm
(early Feb). Overall drift is modest (=+0.01-0.02), indicating event-linked perturbations with rapid recovery.
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TABLE 2. Network Protocol and Interoperability Performance in Agroecological IoT Systems

Stack PDR (%) | Latency Jitter Throughput | Packet Overhead | SPARQL Latency | Ontology Align | Sem. Interop
p95 (ms) | (ms) (kbps) (%) (ms) P/R (0-1)

MQTT +| 98.1 42 3.4 420 6.2 38 0.93/0.90 0.92

LwM2M

CoAP  over| 96.8 55 4.7 310 8.1 44 0.91/0.88 0.9

6LoWPAN

OPC UA over| 99.2 28 1.9 680 5.4 35 0.94/0.92 0.94

TSN

LoRaWAN +| 925 210 122 35 9.5 52 0.88/0.84 0.86

MQTT bridge

Proposed 98.7 36 2.3 520 6.0 33 0.95/0.93 0.95

(Hybrid stack)

Table 2 compares different network stacks in terms of reliability, latency, efficiency, and semantic
interoperability. OPC UA over TSN achieves the highest reliability with 99.2% PDR and the lowest jitter, making
it ideal for high-throughput applications. MQTT + LwM2M and the proposed hybrid stack balance strong packet
delivery (98.1% and 98.7%) with moderate latency, while also achieving superior semantic interoperability (0.92
and 0.95). CoAP over 6LoOWPAN offers lightweight deployment but with slightly higher packet overhead, whereas
LoRaWAN + MQTT bridge exhibits the lowest throughput and highest latency, limiting real-time suitability. The
proposed hybrid stack demonstrates the best overall balance, delivering low latency (36 ms p95), efficient
throughput, and the highest semantic interoperability score (0.95), ensuring robust and standards-compliant data
exchange.
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Fig.5. Ablation Waterfall: Step-wise AF1 Improvements from PCA to Semantic Constraints with
Latency/Energy Effects

Figure 5 summarizes the cumulative impact of each component in the pipeline. From the baseline, PCA
and kernel-based anomaly scoring provide early but modest gains; adding the temporal encoder and self-attention
drives a clear lift, while ontology alignment followed by semantic constraints yields the largest overall
improvement. The annotations beneath each bar indicate per-step inference-cost changes—small latency (=+1-2
ms) and energy (sub-mJ) deltas—showing that accuracy gains are achieved with minimal overhead.
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Scalability Curve
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Fig.6. Scalability of the Multi-Agent Stack: p95 Latency & SPARQL vs F1 Across Increasing Agents

Figure 6 summarizes the scalability behavior: as the number of agents grows, both network p95 latency
and SPARQL p95 steadily increase, while F1 improves early and then plateaus near ~64 agents (saturation point).
This demonstrates that as we reach that threshold, the pace of progress in accuracy slows down, but the cost of
exchanges and searches continues to rise. With 32—64 agents, you can operate a respectable system with near-
maximum accuracy and reasonable latency.

V. CONCLUSION

This research drew out the framework for an IoT architecture that is optimized for agroecological
monitoring in terms of interoperability, multi-agent functionality, and edge efficiency. A combination of calibrated
probabilistic inference, modality-aware normalization, variance-preserving projection, ontology-aligned whitening,
gated temporal encoding, and kernelized anomaly scoring is used in this arrangement. The stack maintained
consistent and reliable performance within the constraints of the available resources throughout the field-style
assessments. The success percentage of packet delivery was 98.7 percent when tested. The p95 network latency
was still greater than the 33 ms SPARQL delay, even at 36 ms. When it comes to time-critical sensing and semantic
querying, there is now absolutely no wiggle space. Evidence suggested that end-to-end discrimination had a stable
baseline and improved by around 6-7 F1 points. In addition, it was shown that the daily F1 was around 0.88 and
that it recovered rapidly after irrigation- and rain-induced perturbations. This demonstrates its resilience to
environmental drift. The extraordinary probability calibration enabled the selection of defensible thresholds under
operational risk, with an expected calibration error (ECE) of around 0.047 and a Brier score of roughly 0.082. The
presence of a distinct operating environment that might affect capacity design becomes more obvious when we pass
this stage, as the development of communication and inquiry costs driven by utility becomes more evident than
previously. The findings show that it is possible to combine heterogeneous sensor networks into an auditable
monitoring system by combining semantics-aware representation learning with efficient edge temporal inference.
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