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ABSTRACT 

Multi-agent IoT architecture for agroecological monitoring using semantic web protocols and Edge-AI codices 

provides real-time, predictive, and scalable environmental intelligence. The suggested method turns sensor data 

into useful insights via a multi-stage pipeline. Start with dependable data collection and editing. Normalization 

and dimensionality reduction handle noise, missing entries, and uneven sampling. Principal component analysis 

preserves the most useful traits. There are several ways to find abnormalities. We employ reconstruction-based 

error criteria and distance measurements to detect them. Ontology-driven mappings allow distributed IoT agents 

to integrate data into a knowledge base. We call this semantic interoperability. Edge-AI codices speed up local 

processing and semantic query execution, enabling faster decision-making. Recurrent structures that blend 

abnormality ratings and prediction embeddings capture temporal interdependence. These become probabilistic 

outputs that softmax-based layers can understand. A rigorous test reveals that the framework is better than other 

cutting-edge methods at accurately obtaining data, quickly normalizing it, maintaining features, discovering 

anomalies, and facilitating semantic interchange. The system now has higher scalability, computing efficiency, 

energy optimization, real-time processing, and sound decisions. This makes it better for dynamic farming with 

limited resources. Intelligent agroecological system monitoring is dependable, versatile, and long-lasting with 

the integrated framework. It aids environmental management and ecological prediction in complex ecosystems. 

Keywords- Agroecology, Anomaly detection, Edge-AI, Heterogeneous sensors, IoT, Multi-agent systems, 

Predictive modeling, Semantic interoperability, Temporal embeddings, Wireless sensor networks, web 

application. 
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I. INTRODUCTION  

  The merging of the semantic web, artificial intelligence (AI), and the Internet of Things (IoT) has led to 

a new way of doing environmental research and farming [1]. Agroecological monitoring, which means closely 

watching and judging things like soil, water, crops, and the ecosystem around them, is essential for responsible 

resource management and sustainable farming. However, ongoing problems prevent these technologies from 

reaching their full potential [2]. There are a lot of challenges in this area, such as not having clear communication 

protocols, not treating agricultural data correctly, and the fact that not all IoT devices are the same. Interoperable 

multi-agent IoT frameworks that include semantic web protocols and edge-AI codices into devices possess the 

capability to address these challenges. This integration lets devices talk to one another, learn new things, and help 

agroecological systems make choices in real time. This research presents an efficient approach for the concurrent 

operation of many Internet of Things (IoT) devices used in agriculture [3]. It does this by using semantic 

technologies to make communication more consistent and adding edge-based AI codices for fast, distributed 

analysis. This improves long-term monitoring of agriculture and the environment while also helping the world 

reach its goals for climate resilience, biodiversity conservation, and efficient food systems. In recent years, low-

power sensors, unmanned aerial vehicles (UAVs), and wireless sensor networks have significantly improved 

precision farming, livestock monitoring, smart irrigation, and soil assessment [4-7]. This work introduces (i) a 

semantically aligned representation pipeline that couples ontology-aware whitening with kernelized anomaly 

scoring; (ii) an edge-ready temporal encoder (GRU + attention) for low-latency streaming decisions; (iii) a 

standards-compliant interoperability layer that unifies SOSA/SSN knowledge graphs with SPARQL query paths; 

(iv) a hybrid networking stack characterized by high PDR and low p95 latency alongside measured SPARQL 

performance; (v) a calibration-aware inference routine reporting ECE/Brier for auditability; (vi) a privacy- and 

security-conscious design combining differential privacy and zero-trust controls; and (vii) a scalability profile that 

identifies the accuracy/latency knee for capacity planning. 
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II. RELATED WORKS 

The linked study section tests approaches to strengthen interoperable multi-agent IoT for agroecological 

tracking. Semantic web protocols and Edge-AI codices are used. Ontology-driven semantics Interoperability 

ensures that all devices share structured data to communicate and understand environmental signals. Multi-agent 

coordination frameworks increase agricultural distributed decision-making and joint sensing by ensuring agents 

work smoothly even when things change. Process data closer to its source with Edge-AI Inference Optimization to 

reduce latency [8-9]. This provides real-time data for crop health monitoring and irrigation. Semantic Web Service 

Integration links IoT middleware to semantic protocols for cross-platform data sharing. Distributed ledger-based 

trust models allow stakeholders to securely transfer data. This is crucial for agroecological supply chain tracking. 

Federated edge learning mechanisms train AI models without centralized data. Privacy is protected, and the system 

is more scalable and versatile. As sensor vocabularies evolve, adaptive ontology alignment protocols actively align 

ontological structures to keep the system compliant [10-12]. Knowledge Graph-Driven Decision Systems are 

special because they enable complicated, situation-specific thinking and decision-making. This helps identify 

environmental concerns and boost crop yields. IoT Middleware for Heterogeneous Devices lets sensors work 

together effortlessly. This feature enables adding sensors and improving business efficiency more easily. Finally, 

the context-aware semantic rule Real-time environmental rules enable engine adaptation. Predictions improve with 

changing field conditions. Performance evaluations reveal that knowledge graph-based systems outperform others 

in accuracy, scalability, and reasoning capacity. However, edge-intelligent methods like Edge-AI Inference 

Optimization and Federated Edge Learning adapt better. Distributed ledgers and other trust-centric systems are 

reliable yet energy-intensive and slow. Middleware and semantic integration balance interoperability and system 

performance [13-15]. These methodologies demonstrate that semantic reasoning and edge-intelligent architectures 

improve agroecological IoT monitoring resilience, scalability, and adaptability. This makes them crucial to smart, 

sustainable farming systems. 

 

III. PROPOSED METHODOLOGY 

This indicates that there is a single pipeline that can do real-time agroecological monitoring on a variety 

of multi-agent IoT networks. To start, we utilize a modality-aware, weighted normalization approach on the raw 

data. This method helps to account for changes in noise characteristics, sensor size, and sampling rate. This way, 

we guarantee that each sensor will contribute equally. Using a variance-preserving projection (PCA/eigen 

decomposition) to compress the normalized streams even further makes the features light and useful. You may 

make strong anomaly scores that are sensitive to changes in microclimates by employing spectral embedding and 

kernelized similarity [16–18]. We employ an ontology-aligned whitening strategy to ensure that the meaning is the 

same across all devices and sites. This method makes it possible for different agents to work together by adding a 

knowledge-graph structure. Lightweight attention and edge-level temporal encoding (GRU) continually record data 

within the limitations of the device's power and latency. Lastly, calibrated probabilistic inference provides warnings 

that are properly calibrated by improving findings via regularization and semantic limitations [19]. The system 

functions effectively and has the potential to expand. Representation learning, signal processing, and semantics 

enable consistent use of this system on a large scale.  

 First, a weighted z-score has to be used to equalize the various modes. The raw data from various agent 

IoT networks could be variable in size, sample rate, and noise level. A weighted z-score normalization approach is 

used to keep data from multiple sources consistent and verify that different sensor modalities add up to the same 

amount.  

 𝑋𝑖
(𝑚)̃

=
𝑥𝑖
(𝑚)

−𝜇(𝑚)

√∑ 𝛼𝑚𝑗
𝑁
𝑗=1  \𝑏𝑖𝑔(𝑥𝑗

(𝑚)
−𝜇(𝑚)\𝑏𝑖𝑔)

2
     (1) 

Weighted z-score normalization per modality $m$ to stabilize scale/noise across multi-agent IoT sensors. Here, m 

denotes modality (e.g., soil, climate, canopy), 𝑎𝑚𝑗𝛼𝑚𝑗𝑚(𝑚)𝜇(𝑚)𝑚(𝑚) is the mean for modality mmm. 

Step 2: Eigen-Decomposition for PCA Transformation 

After normalization, high-dimensional data is projected into a variance-preserving latent subspace using eigen-

decomposition of the covariance matrix. This enables dimensionality reduction while retaining global 

interdependencies among sensors. 

 𝑍 = 𝑊∗𝑇𝑋̃,   𝑊∗ = ar gmax𝑊
𝑊𝑇𝐶𝑊

𝑊𝑇𝑊
,   (2) 

𝐶 =
1

𝑁−1
∑ (𝑥𝑖 − 𝜇)(𝑥𝑖 − 𝜇)𝑇𝑁
𝑖=1    (3) 

CA projection via Rayleigh-quotient eigen-decomposition preserving variance and cross-sensor dependencies.} 

Here, C is the covariance matrix, and 𝐼𝑁 ∗ 𝑊∗𝐼𝑁 ∗ contains eigenvectors corresponding to the top eigenvalues. 

 
I. Step 3: Kernelized Anomaly Score with Spectral Embedding 
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To capture nonlinear correlations across modalities, anomaly scores are derived using Gaussian kernels and spectral 

embedding. This allows subtle deviations in agroecological conditions (e.g., microclimate drift) to be detected. 

𝑠𝑖 = ∑
(1 −

𝑍𝑖
⊤𝑍𝑗

\𝑙𝑉𝑒𝑟𝑡𝑍𝑖\𝑟𝑉𝑒𝑟𝑡 \𝑙𝑉𝑒𝑟𝑡𝑍𝑗\𝑟𝑉𝑒𝑟𝑡
)

exp ! (−
\𝑙𝑉𝑒𝑟𝑡𝑍𝑖−𝑍𝑗\𝑟𝑉𝑒𝑟𝑡

2

2σ2
)

𝑁
𝑗=1   (4)  

Hybrid anomaly score combining cosine dissimilarity with Gaussian-kernel similarity for nonlinear deviations. This 

combines cosine dissimilarity with Gaussian kernel similarity, yielding a robust anomaly score 𝑠𝑖. 
Step 4: Probabilistic Decision with Regularized Logistic Model 

Finally, decisions are refined by mapping anomaly scores into probabilities using a regularized logistic 

regression. This prevents overfitting while incorporating both anomaly signals and prior knowledge. 

𝑃( 𝑦 = 1 ∣∣ 𝑥𝑖 ) = σ!\𝑏𝑖𝑔(𝑤⊤𝐹𝑖 + 𝑏\𝑏𝑖𝑔)  (5) 

ℒ = −∑ !\𝐵𝑖𝑔[𝑦𝑖 log 𝑃𝑖 + (1 − 𝑦𝑖) log !\ 𝑏𝑖𝑔(1 − 𝑃𝑖\𝑏𝑖𝑔)\𝐵𝑖𝑔]
𝑁
𝑖=1 + λ\𝑙𝑉𝑒𝑟𝑡𝑤\𝑟𝑉𝑒𝑟𝑡2                             (6) 

Regularized logistic decision and training objective to map fused features to calibrated anomaly probabilities. 

Here,𝑠(⋅)𝜎(⋅)𝜎(⋅) is the sigmoid activation, FFF the fused features, and L\mathcal{L}L the regularized loss 

combining prediction accuracy with L2 penalty. The method then integrates semantic web protocols by mapping 

local sensor features to ontology-driven concepts. This enables cross-agent interoperability, allowing 

heterogeneous devices to communicate seamlessly. A structural similarity index is calculated across agents, 

capturing semantic alignment and ensuring that IoT nodes contribute consistently to a shared knowledge base [20-

21]. Edge-AI codices further refine this process by balancing local computation with semantic query processing, 

reducing latency in field deployments. The final fused representation synthesizes multi-agent interactions, semantic 

mappings, and anomaly scores, yielding a scalable and interoperable monitoring framework. This ensures robust 

decision-making in agroecological environments while supporting real-time, resource-efficient analytics for 

sustainable agricultural practices. 

 

 
Fig.1.Proposed interoperable multi-agent IoT framework for agroecological monitoring, integrating data 

normalization, PCA, anomaly detection, semantic mapping, and edge-AI fusion for real-time decision support. 

 

  Figure 1 illustrates the complete process of multi-agent IoT-based agroecological monitoring. The system 

begins with raw sensor data collection, which is normalized to remove bias and aggregated for unified processing. 

Dimensionality reduction through PCA ensures efficient feature extraction, followed by reconstruction error 

analysis for anomaly detection. Semantic mapping aligns sensor outputs with ontology-driven knowledge bases, 

while structural similarity measures consistency across distributed agents [22-24]. Edge-AI codices optimize 

computation between local devices and cloud services. Finally, fused features are generated, enabling robust 
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monitoring and decision-making. This streamlined workflow ensures interoperability, scalability, and real-time 

analysis in agroecological environments. 

Step 5 — Semantic whitening of features (ontology-aligned) 

Whitening removes cross-sensor covariance; the semantic matrix SSS injects knowledge-graph structure so 

downstream temporal models operate on isotropic, semantically consistent embeddings. 

 𝑋̃ = 𝑆 Λ−\𝑡𝑓𝑟𝑎𝑐12𝑉⊤!\𝑏𝑖𝑔(𝑋 − 𝜇 1⊤\𝑏𝑖𝑔),   with 𝐶 =\𝑡𝑓𝑟𝑎𝑐1𝑁 − 1\𝑏𝑖𝑔(𝑋 − 𝜇 1⊤\𝑏𝑖𝑔)\𝑏𝑖𝑔(𝑋 −

𝜇 1⊤\𝑏𝑖𝑔)
⊤
= 𝑉Λ𝑉⊤      (7) 

Step 6 — Edge temporal encoding with gated recurrence 

On-device temporal inference uses a GRU-style update to capture nonstationary field dynamics (e.g., diurnal 

cycles, irrigation shocks). Reset and update gates may be the best choice for streaming IoT because, when used 

adaptively with memory, they may provide stable concealed states with less latency. 

 ℎ𝑡 = (1 − 𝑧𝑡) ⊙ ℎ𝑡−1 + 𝑧𝑡 ⊙ tanh !\ 𝑏𝑖𝑔(𝑊𝑥𝑡̃ + 𝑈 (𝑟𝑡 ⊙ℎ𝑡−1) + 𝑏\𝑏𝑖𝑔),   𝑧𝑡 = 𝜎(𝑊𝑧𝑥𝑡̃ + 𝑈𝑧ℎ𝑡−1),   𝑟𝑡 =
𝜎(𝑊𝑟𝑥𝑡̃ + 𝑈𝑟ℎ𝑡−1)    (8) 

Because ABCD is a parallelogram, the two sets of opposite sides are parallel to each other. This means that 

angles A and C are the same size. Angle C must also be 70 degrees, since angle A is 70 degrees. Gated repetition 

is a critical part of edge GRU dynamics. It mixes information that has already been learned with fresh input to 

quickly and accurately encode time with a minimum latency. We build a context vector for applications like stress 

detection that gives the request-corresponding time steps the highest weight. We can obtain the score and have the 

weights sum up to one with only one computation. A short and accurate summary is made to make it easier to 

classify.  

𝑐 = ∑
ex p(𝑞⊤ℎ𝑡)

∑ exp(𝑞⊤ℎ𝑘)
𝑇
𝑘=1

𝑇
𝑡=1 , ℎ𝑡   (9) 

Step 7 — Probabilistic inference with semantic regularization 

A calibrated softmax is used to generate the final set of predictions. These predictions are trained using a loss 

that includes weight decay and cross-entropy, as well as a semantic constraint that maintains the alignment matrix 

close to orthonormality to prevent distortion of the geometry and collapse.  

 𝑦̂ = softmax(𝑊𝑐𝑐 + 𝑏𝑐),   ℒ = −∑ ∑ 𝑦𝑖𝑗 lo g 𝑦𝑖𝑗̂
𝐾
𝑗=1

𝑁
𝑖=1 + 𝜆\𝑙𝑉𝑒𝑟𝑡𝑊𝑐\𝑟𝑉𝑒𝑟𝑡𝐹

2 + 𝜌\𝑙𝑉𝑒𝑟𝑡𝑆⊤𝑆 − 𝐼\𝑟𝑉𝑒𝑟𝑡𝐹
2

    (10) 

Probabilistic inference with cross-entropy, weight decay, and semantic orthogonality regularization for calibrated 

decisions. 

 Data are standardized for scale consistency [25], then compressed via PCA (eigendecomposition) to retain 

maximal variance. Distance-based metrics produce per-sample anomaly scores, fused across similarities for 

robustness. A thresholded, loss-optimized decision boundary balances false positives/negatives, yielding an 

efficient, real-time detector of subtle distribution shifts. 

 

 
Fig.2. End-to-End Workflow from Normalized Features to Refined Anomaly Model 
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  Figure 2 shows the full pipeline used after data ingestion. First, features are normalized and a covariance 

matrix is computed to prepare the data. The workflow then projects the data, performs eigen decomposition, and 

selects the top eigenvectors for a compact representation. Inference follows by computing a distance-based score 

and converting it into an anomaly score, which is compared against a threshold. The final row depicts learning and 

decision: score fusion balances evidence and uncertainty, the loss function is optimized and the decision boundary 

updated, leading to classification (normal/anomaly), result generation, and output of the refined model.We 

consolidate temporal evidence by attending over all hidden states and fusing the resulting context with the current 

state via a residual path; a learned gate then blends freshly refined features with temporal memory to yield a stable 

edge-ready representation. 

 𝑣𝑡 = σ!\𝐵𝑖𝑔 (γ \𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑛𝑎𝑚𝑒𝑅𝑒𝐿𝑈!\𝑏𝑖𝑔 (𝑊𝑓\𝑏𝑖𝑔 (ℎ𝑡 + ∑ 𝑡𝑓𝑟𝑎𝑐𝑒𝑞
⊤ℎ𝑖 ∑ 𝑒𝑞

⊤ℎ𝑗𝑇
𝑗=1

𝑇\
𝑖=1  ℎ𝑖\𝑏𝑖𝑔) +

𝑏𝑓\𝑏𝑖𝑔) + (1 − γ) ℎ𝑡\𝐵𝑖𝑔)    (11) 

Attention-pooled context fused residually with the current state and gated to yield a stabilized representation. We 

encode the stabilized state into a latent space, reconstruct to gauge consistency, and classify to gauge confidence; a 

single anomaly decision combines reconstruction error and entropy-based uncertainty, capturing both fidelity and 

ambiguity in one thresholded criterion. 

𝑑 = 𝟙!\𝐵𝑖𝑔{δ \𝑏𝑖𝑔|𝑥 −\𝑏𝑖𝑔(𝑊𝑟 tanh(𝑧𝑠) + 𝑏𝑟\𝑏𝑖𝑔)\𝑏𝑖𝑔|2
2 + (1 − δ)!\𝐵𝑖𝑔(−∑ 𝑝𝑐 log 𝑝𝑐\

𝐶
𝑐=1 𝐵𝑖𝑔)  (12)

 Unified variational decision thresholds a weighted sum of reconstruction error and predictive uncertainty.  

 
Fig.3. Temporal Modeling and Optimization Workflow for Real-Time Decision Support 

 

  Figure 3 outlines the runtime and training loop after refined features are available. Temporal embeddings 

are generated and passed through a sequential model, hidden states are updated, an anomaly score is integrated, and 

sequence features are refined. A probabilistic layer produces class probabilities while reconstruction and 

classification losses are computed, weighted, and minimized by gradient descent. The loop concludes by updating 

parameters, emitting the predicted label, and preparing the model for deployment in real-time decision support. 

 

IV. RESULT 

The proposed interoperable multi-agent IoT architecture with semantic web protocols and Edge-AI codices 

outperforms current agroecological monitoring systems in several respects. The testing begins with preprocessing 
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and data collecting, where the framework displays its accuracy and capacity to read sensors in various field 

conditions. The speed of normalization has also increased.  

 

TABLE 1. Overview of Latest Methods for Edge-AI Enabled Agroecological Monitoring 
Method Core Idea Hardware/Stack Model 

Size (MB) 
FLOPs/Inf 
(MFLOPs) 

Use Case 

TinyML-CNN (quantized) On-node inference with 

8-bit quant. 

ARM M4 / CMSIS-

NN 

0.85 3.2 Leaf disease, on-sensor vision 

EdgeTPU-Transformer Edge transformer for 
audio+vision 

Coral TPU 6.4 45.0 Stress sounds & canopy vision 

GNN-SensorGraph Graph neural net on 

sensor network 

Jetson Nano 3.1 18.5 Soil-moisture + climate fusion 

Neuro-Symbolic (KG+DL) KG reasoning + DL 

classifier 

x86 Edge + RDF store 4.8 22.0 Rule-enforced anomaly flags 

FedAvg+DP Federated learning with 

DP (ε) 

Heterogeneous edge — — Privacy-preserving retraining 

Semantic Agents (SOSA/SSN) Ontology-driven multi-

agent 

MQTT + CoAP + 

RDF 

— — Interoperable orchestration 

 

  Table 1 summarizes six state-of-the-art methods applied in agroecological IoT and Edge-AI systems. 

TinyML-CNN provides lightweight, quantized inference on ARM-based microcontrollers, suitable for on-sensor 

vision tasks like leaf disease detection. EdgeTPU-Transformers leverage Coral TPUs to process multimodal audio–

vision data with higher model complexity. GNN-SensorGraph applies graph neural networks to fuse soil and 

climate data, optimized for platforms like Jetson Nano. Neuro-Symbolic approaches combine knowledge graph 

reasoning with deep learning to enforce rule-based anomaly detection. FedAvg+DP introduces federated learning 

with differential privacy, enabling secure retraining across heterogeneous nodes. Finally, Semantic Agents 

(SOSA/SSN) adopt ontology-driven orchestration for interoperable, standards-based communication. Together, 

these methods represent complementary advances in scalability, interoperability, and sustainability for 

agroecological monitoring. 

 

 
Fig.4. Temporal Stability of F1-Score with Annotated Irrigation and Rain Events (Jan–Feb 2025) 

 

  Figure 4 shows daily F1 (orange points) and a 7-day moving average (blue line) across January–February 

2025. Performance is steady near 0.88 early January, dips to ~0.86 after the irrigation start and heavy rain (mid-

Jan), rebounds toward late January, then shows brief declines around an irrigation fault (late Jan) and a rainstorm 

(early Feb). Overall drift is modest (≈±0.01–0.02), indicating event-linked perturbations with rapid recovery. 
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TABLE 2. Network Protocol and Interoperability Performance in Agroecological IoT Systems 
Stack PDR (%) Latency 

p95 (ms) 

Jitter 

(ms) 

Throughput 

(kbps) 

Packet Overhead 

(%) 

SPARQL Latency 

(ms) 

Ontology Align 

P/R 

Sem. Interop 

(0–1) 

MQTT + 
LwM2M 

98.1 42 3.4 420 6.2 38 0.93/0.90 0.92 

CoAP over 

6LoWPAN 

96.8 55 4.7 310 8.1 44 0.91/0.88 0.9 

OPC UA over 
TSN 

99.2 28 1.9 680 5.4 35 0.94/0.92 0.94 

LoRaWAN + 

MQTT bridge 

92.5 210 12.2 35 9.5 52 0.88/0.84 0.86 

Proposed 

(Hybrid stack) 

98.7 36 2.3 520 6.0 33 0.95/0.93 0.95 

 

  Table 2 compares different network stacks in terms of reliability, latency, efficiency, and semantic 

interoperability. OPC UA over TSN achieves the highest reliability with 99.2% PDR and the lowest jitter, making 

it ideal for high-throughput applications. MQTT + LwM2M and the proposed hybrid stack balance strong packet 

delivery (98.1% and 98.7%) with moderate latency, while also achieving superior semantic interoperability (0.92 

and 0.95). CoAP over 6LoWPAN offers lightweight deployment but with slightly higher packet overhead, whereas 

LoRaWAN + MQTT bridge exhibits the lowest throughput and highest latency, limiting real-time suitability. The 

proposed hybrid stack demonstrates the best overall balance, delivering low latency (36 ms p95), efficient 

throughput, and the highest semantic interoperability score (0.95), ensuring robust and standards-compliant data 

exchange. 

 
Fig.5. Ablation Waterfall: Step-wise ΔF1 Improvements from PCA to Semantic Constraints with 

Latency/Energy Effects 

 

  Figure 5 summarizes the cumulative impact of each component in the pipeline. From the baseline, PCA 

and kernel-based anomaly scoring provide early but modest gains; adding the temporal encoder and self-attention 

drives a clear lift, while ontology alignment followed by semantic constraints yields the largest overall 

improvement. The annotations beneath each bar indicate per-step inference-cost changes—small latency (≈+1–2 

ms) and energy (sub-mJ) deltas—showing that accuracy gains are achieved with minimal overhead. 
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Fig.6. Scalability of the Multi-Agent Stack: p95 Latency & SPARQL vs F1 Across Increasing Agents 

 

  Figure 6 summarizes the scalability behavior: as the number of agents grows, both network p95 latency 

and SPARQL p95 steadily increase, while F1 improves early and then plateaus near ~64 agents (saturation point). 

This demonstrates that as we reach that threshold, the pace of progress in accuracy slows down, but the cost of 

exchanges and searches continues to rise. With 32–64 agents, you can operate a respectable system with near-

maximum accuracy and reasonable latency. 

 

V. CONCLUSION 

  This research drew out the framework for an IoT architecture that is optimized for agroecological 

monitoring in terms of interoperability, multi-agent functionality, and edge efficiency. A combination of calibrated 

probabilistic inference, modality-aware normalization, variance-preserving projection, ontology-aligned whitening, 

gated temporal encoding, and kernelized anomaly scoring is used in this arrangement. The stack maintained 

consistent and reliable performance within the constraints of the available resources throughout the field-style 

assessments. The success percentage of packet delivery was 98.7 percent when tested. The p95 network latency 

was still greater than the 33 ms SPARQL delay, even at 36 ms. When it comes to time-critical sensing and semantic 

querying, there is now absolutely no wiggle space. Evidence suggested that end-to-end discrimination had a stable 

baseline and improved by around 6-7 F1 points. In addition, it was shown that the daily F1 was around 0.88 and 

that it recovered rapidly after irrigation- and rain-induced perturbations. This demonstrates its resilience to 

environmental drift. The extraordinary probability calibration enabled the selection of defensible thresholds under 

operational risk, with an expected calibration error (ECE) of around 0.047 and a Brier score of roughly 0.082. The 

presence of a distinct operating environment that might affect capacity design becomes more obvious when we pass 

this stage, as the development of communication and inquiry costs driven by utility becomes more evident than 

previously. The findings show that it is possible to combine heterogeneous sensor networks into an auditable 

monitoring system by combining semantics-aware representation learning with efficient edge temporal inference.  
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