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Abstract: The global aviation supply chain constitutes a complex, interdependent network characterized by
high-value assets, elongated lead times, and stringent regulatory requirements. This complexity renders it
profoundly vulnerable to a multitude of disruptive risks. Among contemporary challenges, tariff
uncertainty—driven by shifting geopolitical landscapes and trade policies—has emerged as a critical
destabilizing factor, directly impacting cost structures, supplier viability, and logistics planning. Traditional risk
management methodologies, often linear and siloed, prove inadequate for modeling the non-linear, probabilistic
cascading effects inherent in such an environment. This paper proposes a Bayesian Network (BN) model as a
robust computational framework for the diagnosis, prediction, and mitigation of risks within the aviation supply
chain, with a specific focus on integrating tariff uncertainty. The model captures causal relationships between
geopolitical events, supplier financial health, logistics disruptions, quality issues, and the overarching risk of final
assembly line stoppages. By incorporating Conditional Probability Tables (CPTs) informed by historical data and
expert elicitation, the BN facilitates dynamic reasoning under uncertainty. The research demonstrates, through a
detailed case study, how the model can be employed for predictive analysis (e.g., estimating the probability of
disruption given new tariff announcements), diagnostic analysis (e.g., identifying the most probable root causes of
a disruption), and "what-if" mitigation planning (e.g., evaluating the risk reduction efficacy of dual-sourcing
strategies). The findings underscore the superiority of a probabilistic, systems-thinking approach to enhancing the
resilience and strategic agility of aviation supply chains in an era of global trade volatility.
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L Introduction

The aviation manufacturing industry serves as a paramount exemplar of globalized production,
integrating thousands of components from a multitude of suppliers across diverse international jurisdictions into
highly complex final products such as commercial aircraft and propulsion systems (Wilkinson et al., 2016). This
intricate web of dependencies, while efficient under stable conditions, engenders significant systemic fragility.
Disruptions at any node—be it a sub-tier supplier of specialized alloys or a provider of avionic software—can
propagate through the network with considerable velocity and amplitude, culminating in substantial financial
losses, program delays, and reputational damage (Ivanov et al., 2017).

In recent years, the global trade environment has undergone a period of pronounced turbulence. The rise
of protectionist policies, trade disputes between major economies, and the renegotiation of multilateral
agreements have introduced an unprecedented level of tariff uncertainty (Fajgelbaum et al., 2020). For aviation
Original Equipment Manufacturers (OEMs), this uncertainty is not merely a matter of fluctuating import costs. It
directly imperils the stability of the supply base, complicates long-term sourcing strategies, and injects volatility
into logistics and customs clearance processes (Gerefti & Lee, 2016). A supplier operating on thin margins may be
pushed into financial distress by sudden tariff impositions, creating a critical bottleneck. The challenge for risk
managers is to move from reactive firefighting to proactive, predictive resilience building.

Conventional supply chain risk management (SCRM) tools, such as Failure Mode and Effects Analysis
(FMEA) or checklists, often lack the computational sophistication to handle the probabilistic interdependencies
and multi-directional reasoning required for this task (Ho et al., 2015). They tend to treat risks as isolated events
rather than symptoms of a connected system.

To address this gap, our research advocates for the adoption of Bayesian Networks (BNs). A BN is a
probabilistic graphical model that represents a set of variables and their conditional dependencies via a Directed
Acyclic Graph (DAG) (Pearl, 1988). Its capability to synthesize quantitative data with qualitative expert judgment,
to update beliefs upon the arrival of new evidence (e.g., a new tariff announcement), and to perform both
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predictive and diagnostic inference makes it an exceptionally powerful framework for modeling the aviation
supply chain's risk landscape under tariff uncertainty (Hosseini & Barker, 2016).

This paper is structured as follows: Section 2 provides a comprehensive literature review on aviation
SCRM and BN applications. Section 3 details the methodological framework for BN construction. Section 4
presents our proposed BN model, integrating tariff uncertainty as a core node. Section 5 demonstrates the model's
application through computational reasoning and a case study. Section 6 discusses the managerial implications
and theoretical contributions, and Section 7 offers concluding remarks and avenues for future research.

II. Literature Review
2.1. Aviation Supply Chain Risk Landscape

The unique attributes of the aviation supply chain—including high certification barriers, intense
regulatory oversight, and a oligopolistic market structure—differentiate its risk profile from other industries
(Zhang & Zhang, 2018). Scholars have categorized these risks into several typologies. Tang and Nurmaya Musa
(2011) identified external risks (e.g., natural disasters, geopolitical instability), internal risks (e.g., production
delays, quality failures), and network-related risks (e.g., coordination failures, information asymmetry). More
recently, Ivanov (2018) emphasized the ripple effect, where a disruption propagates through the network,
amplifying in impact.

The introduction of tariff uncertainty, particularly post-2018, has added a potent new dimension. Studies
by Flaaen and Pierce (2019) and Cavallo et al. (2021) demonstrated that uncertainty itself, even before the
implementation of tariffs, can lead to significant investment delays and supply chain reconfiguration. For aviation,
which relies on long-term contracts and relationship-specific investments, this uncertainty is particularly
damaging (Gereffi & Fernandez-Stark, 2016).

2.2. Bayesian Networks in Supply Chain Risk Management
Bayesian Networks have seen growing application in SCRM due to their ability to handle uncertainty
and complexity. Their origins lie in artificial intelligence and decision science (Jensen & Nielsen, 2007). Their
application spans numerous domains:
e  Supplier Selection: BNs can model the probability of a supplier's failure based on financial indicators,
audit results, and geopolitical factors (Lockamy, 2014).
o Disruption Propagation: They can simulate how a delay or quality issue at one node cascades through
the network (Garvey et al., 2015).
o Resilience Assessment: BNs can evaluate the effectiveness of various mitigation strategies, such as
inventory buffering or multi-sourcing (Hosseini et al., 2019).
However, a review of the literature indicates a specific gap: the explicit integration of trade policy and tariff
uncertainty as a first-class risk variable within a BN model for the aviation sector. Most studies treat geopolitical
risk as a monolithic external factor, without dissecting the specific mechanism through which tariff
announcements and fluctuations impact supplier viability and logistics costs. This paper aims to fill this gap.

1. Methodology: Constructing the Bayesian Network
The development of a robust BN is a structured process involving domain expertise, data, and validation.
3.1. Node Identification: The first step is to define the key risk variables (nodes). This is achieved through a
combination of literature review, analysis of historical disruption reports from aviation OEMs, and interviews
with supply chain experts. Nodes should be defined with clear, discrete states (e.g., Tariff Uncertainty: {High,
Medium, Low}).
3.2. Structural Development: The causal relationships between nodes are established, forming the DAG. This
structure is built based on expert knowledge of causal pathways (e.g., high tariff uncertainty can cause supplier
financial distress).
3.3. Parameter Estimation: Defining CPTs: This is the most critical and data-intensive phase. Conditional
Probability Tables (CPTs) quantify the strength of the relationships between parent and child nodes. Probabilities
are populated using:
e Historical Data: Analysis of past disruptions, supplier financial records, and tariff timelines.
o Expert Elicitation: Structured interviews with experts to estimate probabilities for rare or novel events
(e.g., "Given high geopolitical instability, what is the probability of a logistics delay?"). Techniques like
the Delphi method are often used (O'Hagan et al., 2006).
e Literature Synthesis: Borrowing parameters from analogous studies in high-reliability industries.
3.4. Model Validation and Inference: The completed BN must be validated. This involves:
e  Sensitivity Analysis: Testing how sensitive the key output (e.g., probability of stoppage) is to changes in
input probabilities.
e Predictive Validation: Checking if the model's predictions align with known historical outcomes.
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Inference: Using algorithms like Variable Elimination or Gibbs Sampling to perform probability
updates when new evidence is entered into the network (Koller & Friedman, 2009).

Iv. Proposed Bayesian Network Model

We now present our BN model, explicitly incorporating Tariff Uncertainty.
4.1. Network Structure and Nodes
The model comprises the following key nodes, with their respective states:

GeoPolitical Instability: {High, Low}

Trade Policy Volatility: {High, Low} (4 parent of Tariff Uncertainty)
Tariff Uncertainty: {High, Medium, Low}

Supplier Financial Health: {Poor, Good}

Raw_ Material Shortage: {Yes, No}

Logistics Delay: {Yes, No}

Component Quality Issue: {Yes, No}

Final Assembly Line Stoppage: {Yes, No}

Causal Links:

GeoPolitical Instability — Trade Policy Volatility

GeoPolitical Instability — Logistics Delay

GeoPolitical Instability — Raw_Material Shortage

Trade Policy Volatility — Tariff Uncertainty

Tariff Uncertainty — Supplier Financial Health (High uncertainty increases the probability of
financial distress)

Tariff Uncertainty — Logistics_Delay (Affects customs clearance, route planning)

Supplier Financial Health — Raw_Material Shortage

Supplier Financial Health — Component Quality Issue (Financial pressure may lead to
corner-cutting)

Raw_Material Shortage — Component Quality Issue

Raw_Material Shortage — Final Assembly Line Stoppage

Logistics Delay — Final Assembly Line Stoppage

Component Quality Issue — Final Assembly Line Stoppage

(Due to space constraints, a full graphical representation of the DAG is not shown here but is described by the
links above.)

4.2. Conditional Probability Tables (Excerpts)
Prior Probabilities (Root Nodes):

P(GeoPolitical Instability = High) = 0.15
P(Trade Policy Volatility = High) = 0.20

CPT for Tariff Uncertainty (Child of Trade Policy Volatility):

Trade Policy Volatility P(High) P(Medium)P(Low)

High

Low

0.70 0.25 0.05

0.10 0.20 0.70

CPT for Supplier Financial Health (Child of Tariff Uncertainty):

Tariff Uncertainty P(Poor) P(Good)

High

Medium

Low

0.40 0.60
0.15 0.85
0.05 0.95

CPT for Final Assembly Line Stoppage (Child of three nodes):
(A simplified excerpt showing the probability of "Yes" for different combinations)
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Raw_Material Shortage Logistics Delay Component Quality IssueP(Stoppage = Yes)

Yes

Yes

Yes

Yes

No

No

Yes Yes 0.995
Yes No 0.850
No Yes 0.750
No No 0.300
Yes Yes 0.900
Yes No 0.400
No Yes 0.200
No No 0.005

V. Computational Reasoning and Case Study

We now demonstrate the power of the BN through computational inference using hypothetical data. Calculations
are performed using BN software (e.g., GeNle, Netica, or Python libraries like pgmpy).

5.1. Predictive Analysis (Forward Reasoning)

Scenario: News reports indicate a significant escalation of tensions between Country A and Country B.
We model this as setting GeoPolitical Instability = High.

Query: What is the updated probability of a Final Assembly Line Stoppage?

Computation: The BN algorithm propagates this evidence through the network. High geopolitical
instability increases the probability of Trade Policy Volatility (High), which in turn
increases  Tariff Uncertainty (High). This impacts Supplier Financial Health (increasing
P(Poor)), Logistics_Delay (increasing P(Yes)), and Raw_Material Shortage (increasing P(Yes)). These
factors collectively increase the probability of the stoppage.

Result: The model might compute that P(Stoppage = Yes) increases from a baseline of 8% to 35%. This
quantifies the threat, enabling proactive mitigation.

5.2. Diagnostic Analysis (Backward Reasoning)

Scenario: The final assembly line experiences a stoppage (Final Assembly Line Stoppage = Yes).
Query: What is the most probable root cause? What is the updated belief about the state
of Tariff Uncertainty?

Computation: The BN performs diagnostic inference. It calculates the posterior probabilities of all other
nodes given the observed evidence of the stoppage.

Result: The model might identify that Component_Quality Issue has the highest posterior probability of
being "Yes" (e.g., 68%). Furthermore, it shows that P(Tariff Uncertainty = High) has increased
significantly from its prior of ~25% to, say, 55%. This suggests a strong link between the stoppage and
underlying trade policy issues, guiding the investigation away from purely operational causes and
towards strategic sourcing and supplier support.

5.3. "What-If"" Mitigation Analysis

Scenario: The OEM is considering dual-sourcing a critical component to mitigate the risk identified
from a specific supplier. We model this by altering the BN structure: adding a new
node Dual Sourcing Implemented = {Yes, No} that influences the Raw_ Material Shortage node.
If Dual_Sourcing Implemented = Yes, it drastically reduces the probability of a shortage.

Query: If we implement dual-sourcing, how much does it reduce the overall probability of a stoppage,
especially under conditions of High Tariff Uncertainty?

Computation: We run the model twice: once with Dual Sourcing Implemented = No and once with =
Yes, under the evidence Tariff Uncertainty = High.
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e Result: The model quantifies the risk reduction. For example, P(Stoppage = Yes |
Tariff Uncertainty=High) might drop from 45% to 18% with dual-sourcing. This provides a clear,
quantitative Return on Investment (ROI) for the proposed mitigation strategy.

VI. Discussion and Managerial Implications
The case study illustrates the transformative potential of a BN-based approach. It moves decision-making from
intuition to data-driven computation.
6.1. Theoretical Contribution: This research contributes by explicitly embedding tariff uncertainty as a
dynamic, probabilistic driver within a holistic supply chain risk model. It formalizes the causal pathways through
which policy volatility translates into operational disruption, a area less explored in extant literature.
6.2. Managerial Implications:

e Dynamic Risk Monitoring: The BN can serve as a live dashboard. As news feeds update (e.g., "new
tariff announced on aluminum"), this evidence can be entered, and the model instantly updates the risk
profile for all dependent nodes.

e Strategic Sourcing Decisions: The model provides a testbed for evaluating long-term sourcing
strategies, such as near-shoring vs. off-shoring, under different trade policy scenarios.

e Supplier Relationship Management: Identifying that a supplier's financial health is highly sensitive to
tariff uncertainty allows OEMs to work collaboratively on contingency plans, rather than simply
penalizing them for disruptions.

e Inventory and Buffer Management: The model can help optimize the placement and sizing of safety
stock by identifying which components have the highest systemic risk of shortage.

VIL Conclusion and Future Research
In conclusion, the aviation supply chain, in its current globalized form, is acutely exposed to the vicissitudes
of trade policy. Tariff uncertainty is not an exogenous shock but an endogenous risk factor that permeates the
entire network. This paper has argued that Bayesian Networks offer a mathematically rigorous yet intuitively
accessible framework for modeling this complex reality. By enabling predictive, diagnostic, and interventional
reasoning, BNs empower managers to build more resilient and agile supply chains.

Future research directions include:

1. Integrating Machine Learning: Using natural language processing (NLP) to automatically scrape
news and government bulletins to update the GeoPolitical Instability and Trade Policy Volatility nodes
in real-time.

2. Dynamic BNs: Extending the model to a Dynamic Bayesian Network (DBN) to capture the temporal
evolution of risks over time.

3. Fuzzy Logic Integration: Combining BNs with fuzzy logic to handle nodes with imprecise or linguistic
states (e.g., "very high" uncertainty).

4. Multi-Tier Transparency: Expanding the model to include deeper sub-tiers of the supply chain, which
are often the most opaque and vulnerable.

The journey towards a truly resilient aviation supply chain is continuous. Embracing advanced, probabilistic
computational tools like Bayesian Networks is not merely an option but a necessity for navigating the turbulent
skies of global trade.
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