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Abstract: The global aviation supply chain constitutes a complex, interdependent network characterized by 

high-value assets, elongated lead times, and stringent regulatory requirements. This complexity renders it 

profoundly vulnerable to a multitude of disruptive risks. Among contemporary challenges, tariff 

uncertainty—driven by shifting geopolitical landscapes and trade policies—has emerged as a critical 

destabilizing factor, directly impacting cost structures, supplier viability, and logistics planning. Traditional risk 

management methodologies, often linear and siloed, prove inadequate for modeling the non-linear, probabilistic 

cascading effects inherent in such an environment. This paper proposes a Bayesian Network (BN) model as a 

robust computational framework for the diagnosis, prediction, and mitigation of risks within the aviation supply 

chain, with a specific focus on integrating tariff uncertainty. The model captures causal relationships between 

geopolitical events, supplier financial health, logistics disruptions, quality issues, and the overarching risk of final 

assembly line stoppages. By incorporating Conditional Probability Tables (CPTs) informed by historical data and 

expert elicitation, the BN facilitates dynamic reasoning under uncertainty. The research demonstrates, through a 

detailed case study, how the model can be employed for predictive analysis (e.g., estimating the probability of 

disruption given new tariff announcements), diagnostic analysis (e.g., identifying the most probable root causes of 

a disruption), and "what-if" mitigation planning (e.g., evaluating the risk reduction efficacy of dual-sourcing 

strategies). The findings underscore the superiority of a probabilistic, systems-thinking approach to enhancing the 

resilience and strategic agility of aviation supply chains in an era of global trade volatility. 
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I. Introduction 

The aviation manufacturing industry serves as a paramount exemplar of globalized production, 

integrating thousands of components from a multitude of suppliers across diverse international jurisdictions into 

highly complex final products such as commercial aircraft and propulsion systems (Wilkinson et al., 2016). This 

intricate web of dependencies, while efficient under stable conditions, engenders significant systemic fragility. 

Disruptions at any node—be it a sub-tier supplier of specialized alloys or a provider of avionic software—can 

propagate through the network with considerable velocity and amplitude, culminating in substantial financial 

losses, program delays, and reputational damage (Ivanov et al., 2017). 

In recent years, the global trade environment has undergone a period of pronounced turbulence. The rise 

of protectionist policies, trade disputes between major economies, and the renegotiation of multilateral 

agreements have introduced an unprecedented level of tariff uncertainty (Fajgelbaum et al., 2020). For aviation 

Original Equipment Manufacturers (OEMs), this uncertainty is not merely a matter of fluctuating import costs. It 

directly imperils the stability of the supply base, complicates long-term sourcing strategies, and injects volatility 

into logistics and customs clearance processes (Gereffi & Lee, 2016). A supplier operating on thin margins may be 

pushed into financial distress by sudden tariff impositions, creating a critical bottleneck. The challenge for risk 

managers is to move from reactive firefighting to proactive, predictive resilience building. 

Conventional supply chain risk management (SCRM) tools, such as Failure Mode and Effects Analysis 

(FMEA) or checklists, often lack the computational sophistication to handle the probabilistic interdependencies 

and multi-directional reasoning required for this task (Ho et al., 2015). They tend to treat risks as isolated events 

rather than symptoms of a connected system. 

To address this gap, our research advocates for the adoption of Bayesian Networks (BNs). A BN is a 

probabilistic graphical model that represents a set of variables and their conditional dependencies via a Directed 

Acyclic Graph (DAG) (Pearl, 1988). Its capability to synthesize quantitative data with qualitative expert judgment, 

to update beliefs upon the arrival of new evidence (e.g., a new tariff announcement), and to perform both 
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predictive and diagnostic inference makes it an exceptionally powerful framework for modeling the aviation 

supply chain's risk landscape under tariff uncertainty (Hosseini & Barker, 2016). 

This paper is structured as follows: Section 2 provides a comprehensive literature review on aviation 

SCRM and BN applications. Section 3 details the methodological framework for BN construction. Section 4 

presents our proposed BN model, integrating tariff uncertainty as a core node. Section 5 demonstrates the model's 

application through computational reasoning and a case study. Section 6 discusses the managerial implications 

and theoretical contributions, and Section 7 offers concluding remarks and avenues for future research. 

 

II. Literature Review 

2.1. Aviation Supply Chain Risk Landscape 

The unique attributes of the aviation supply chain—including high certification barriers, intense 

regulatory oversight, and a oligopolistic market structure—differentiate its risk profile from other industries 

(Zhang & Zhang, 2018). Scholars have categorized these risks into several typologies. Tang and Nurmaya Musa 

(2011) identified external risks (e.g., natural disasters, geopolitical instability), internal risks (e.g., production 

delays, quality failures), and network-related risks (e.g., coordination failures, information asymmetry). More 

recently, Ivanov (2018) emphasized the ripple effect, where a disruption propagates through the network, 

amplifying in impact. 

The introduction of tariff uncertainty, particularly post-2018, has added a potent new dimension. Studies 

by Flaaen and Pierce (2019) and Cavallo et al. (2021) demonstrated that uncertainty itself, even before the 

implementation of tariffs, can lead to significant investment delays and supply chain reconfiguration. For aviation, 

which relies on long-term contracts and relationship-specific investments, this uncertainty is particularly 

damaging (Gereffi & Fernandez-Stark, 2016). 

 

2.2. Bayesian Networks in Supply Chain Risk Management 

Bayesian Networks have seen growing application in SCRM due to their ability to handle uncertainty 

and complexity. Their origins lie in artificial intelligence and decision science (Jensen & Nielsen, 2007). Their 

application spans numerous domains: 

• Supplier Selection: BNs can model the probability of a supplier's failure based on financial indicators, 

audit results, and geopolitical factors (Lockamy, 2014). 

• Disruption Propagation: They can simulate how a delay or quality issue at one node cascades through 

the network (Garvey et al., 2015). 

• Resilience Assessment: BNs can evaluate the effectiveness of various mitigation strategies, such as 

inventory buffering or multi-sourcing (Hosseini et al., 2019). 

However, a review of the literature indicates a specific gap: the explicit integration of trade policy and tariff 

uncertainty as a first-class risk variable within a BN model for the aviation sector. Most studies treat geopolitical 

risk as a monolithic external factor, without dissecting the specific mechanism through which tariff 

announcements and fluctuations impact supplier viability and logistics costs. This paper aims to fill this gap. 

 

III. Methodology: Constructing the Bayesian Network 

The development of a robust BN is a structured process involving domain expertise, data, and validation. 

3.1. Node Identification: The first step is to define the key risk variables (nodes). This is achieved through a 

combination of literature review, analysis of historical disruption reports from aviation OEMs, and interviews 

with supply chain experts. Nodes should be defined with clear, discrete states (e.g., Tariff_Uncertainty: {High, 

Medium, Low}). 

3.2. Structural Development: The causal relationships between nodes are established, forming the DAG. This 

structure is built based on expert knowledge of causal pathways (e.g., high tariff uncertainty can cause supplier 

financial distress). 

3.3. Parameter Estimation: Defining CPTs: This is the most critical and data-intensive phase. Conditional 

Probability Tables (CPTs) quantify the strength of the relationships between parent and child nodes. Probabilities 

are populated using: 

• Historical Data: Analysis of past disruptions, supplier financial records, and tariff timelines. 

• Expert Elicitation: Structured interviews with experts to estimate probabilities for rare or novel events 

(e.g., "Given high geopolitical instability, what is the probability of a logistics delay?"). Techniques like 

the Delphi method are often used (O'Hagan et al., 2006). 

• Literature Synthesis: Borrowing parameters from analogous studies in high-reliability industries. 

3.4. Model Validation and Inference: The completed BN must be validated. This involves: 

• Sensitivity Analysis: Testing how sensitive the key output (e.g., probability of stoppage) is to changes in 

input probabilities. 

• Predictive Validation: Checking if the model's predictions align with known historical outcomes. 
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• Inference: Using algorithms like Variable Elimination or Gibbs Sampling to perform probability 

updates when new evidence is entered into the network (Koller & Friedman, 2009). 

 

IV. Proposed Bayesian Network Model 

We now present our BN model, explicitly incorporating Tariff_Uncertainty. 

4.1. Network Structure and Nodes 

The model comprises the following key nodes, with their respective states: 

• GeoPolitical_Instability: {High, Low} 

• Trade_Policy_Volatility: {High, Low} (A parent of Tariff_Uncertainty) 

• Tariff_Uncertainty: {High, Medium, Low} 

• Supplier_Financial_Health: {Poor, Good} 

• Raw_Material_Shortage: {Yes, No} 

• Logistics_Delay: {Yes, No} 

• Component_Quality_Issue: {Yes, No} 

• Final_Assembly_Line_Stoppage: {Yes, No} 

Causal Links: 

• GeoPolitical_Instability → Trade_Policy_Volatility 

• GeoPolitical_Instability → Logistics_Delay 

• GeoPolitical_Instability → Raw_Material_Shortage 

• Trade_Policy_Volatility → Tariff_Uncertainty 

• Tariff_Uncertainty → Supplier_Financial_Health (High uncertainty increases the probability of 

financial distress) 

• Tariff_Uncertainty → Logistics_Delay (Affects customs clearance, route planning) 

• Supplier_Financial_Health → Raw_Material_Shortage 

• Supplier_Financial_Health → Component_Quality_Issue (Financial pressure may lead to 

corner-cutting) 

• Raw_Material_Shortage → Component_Quality_Issue 

• Raw_Material_Shortage → Final_Assembly_Line_Stoppage 

• Logistics_Delay → Final_Assembly_Line_Stoppage 

• Component_Quality_Issue → Final_Assembly_Line_Stoppage 

(Due to space constraints, a full graphical representation of the DAG is not shown here but is described by the 

links above.) 

 

4.2. Conditional Probability Tables (Excerpts) 

Prior Probabilities (Root Nodes): 

• P(GeoPolitical_Instability = High) = 0.15 

• P(Trade_Policy_Volatility = High) = 0.20 

CPT for Tariff_Uncertainty (Child of Trade_Policy_Volatility): 

Trade_Policy_Volatility P(High) P(Medium) P(Low) 

High 0.70 0.25 0.05 

Low 0.10 0.20 0.70 

CPT for Supplier_Financial_Health (Child of Tariff_Uncertainty): 

Tariff_Uncertainty P(Poor) P(Good) 

High 0.40 0.60 

Medium 0.15 0.85 

Low 0.05 0.95 

CPT for Final_Assembly_Line_Stoppage (Child of three nodes): 

(A simplified excerpt showing the probability of "Yes" for different combinations) 
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Raw_Material_Shortage Logistics_Delay Component_Quality_Issue P(Stoppage = Yes) 

Yes Yes Yes 0.995 

Yes Yes No 0.850 

Yes No Yes 0.750 

Yes No No 0.300 

No Yes Yes 0.900 

No Yes No 0.400 

No No Yes 0.200 

No No No 0.005 

 

V. Computational Reasoning and Case Study 

We now demonstrate the power of the BN through computational inference using hypothetical data. Calculations 

are performed using BN software (e.g., GeNIe, Netica, or Python libraries like pgmpy). 

 

5.1. Predictive Analysis (Forward Reasoning) 

• Scenario: News reports indicate a significant escalation of tensions between Country A and Country B. 

We model this as setting GeoPolitical_Instability = High. 

• Query: What is the updated probability of a Final_Assembly_Line_Stoppage? 

• Computation: The BN algorithm propagates this evidence through the network. High geopolitical 

instability increases the probability of Trade_Policy_Volatility (High), which in turn 

increases Tariff_Uncertainty (High). This impacts Supplier_Financial_Health (increasing 

P(Poor)), Logistics_Delay (increasing P(Yes)), and Raw_Material_Shortage (increasing P(Yes)). These 

factors collectively increase the probability of the stoppage. 

• Result: The model might compute that P(Stoppage = Yes) increases from a baseline of 8% to 35%. This 

quantifies the threat, enabling proactive mitigation. 

 

5.2. Diagnostic Analysis (Backward Reasoning) 

• Scenario: The final assembly line experiences a stoppage (Final_Assembly_Line_Stoppage = Yes). 

• Query: What is the most probable root cause? What is the updated belief about the state 

of Tariff_Uncertainty? 

• Computation: The BN performs diagnostic inference. It calculates the posterior probabilities of all other 

nodes given the observed evidence of the stoppage. 

• Result: The model might identify that Component_Quality_Issue has the highest posterior probability of 

being "Yes" (e.g., 68%). Furthermore, it shows that P(Tariff_Uncertainty = High) has increased 

significantly from its prior of ~25% to, say, 55%. This suggests a strong link between the stoppage and 

underlying trade policy issues, guiding the investigation away from purely operational causes and 

towards strategic sourcing and supplier support. 

 

5.3. "What-If" Mitigation Analysis 

• Scenario: The OEM is considering dual-sourcing a critical component to mitigate the risk identified 

from a specific supplier. We model this by altering the BN structure: adding a new 

node Dual_Sourcing_Implemented = {Yes, No} that influences the Raw_Material_Shortage node. 

If Dual_Sourcing_Implemented = Yes, it drastically reduces the probability of a shortage. 

• Query: If we implement dual-sourcing, how much does it reduce the overall probability of a stoppage, 

especially under conditions of High Tariff_Uncertainty? 

• Computation: We run the model twice: once with Dual_Sourcing_Implemented = No and once with = 

Yes, under the evidence Tariff_Uncertainty = High. 
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• Result: The model quantifies the risk reduction. For example, P(Stoppage = Yes | 

Tariff_Uncertainty=High) might drop from 45% to 18% with dual-sourcing. This provides a clear, 

quantitative Return on Investment (ROI) for the proposed mitigation strategy. 

 

VI. Discussion and Managerial Implications 

The case study illustrates the transformative potential of a BN-based approach. It moves decision-making from 

intuition to data-driven computation. 

6.1. Theoretical Contribution: This research contributes by explicitly embedding tariff uncertainty as a 

dynamic, probabilistic driver within a holistic supply chain risk model. It formalizes the causal pathways through 

which policy volatility translates into operational disruption, a area less explored in extant literature. 

6.2. Managerial Implications: 

• Dynamic Risk Monitoring: The BN can serve as a live dashboard. As news feeds update (e.g., "new 

tariff announced on aluminum"), this evidence can be entered, and the model instantly updates the risk 

profile for all dependent nodes. 

• Strategic Sourcing Decisions: The model provides a testbed for evaluating long-term sourcing 

strategies, such as near-shoring vs. off-shoring, under different trade policy scenarios. 

• Supplier Relationship Management: Identifying that a supplier's financial health is highly sensitive to 

tariff uncertainty allows OEMs to work collaboratively on contingency plans, rather than simply 

penalizing them for disruptions. 

• Inventory and Buffer Management: The model can help optimize the placement and sizing of safety 

stock by identifying which components have the highest systemic risk of shortage. 

 

VII. Conclusion and Future Research 

In conclusion, the aviation supply chain, in its current globalized form, is acutely exposed to the vicissitudes 

of trade policy. Tariff uncertainty is not an exogenous shock but an endogenous risk factor that permeates the 

entire network. This paper has argued that Bayesian Networks offer a mathematically rigorous yet intuitively 

accessible framework for modeling this complex reality. By enabling predictive, diagnostic, and interventional 

reasoning, BNs empower managers to build more resilient and agile supply chains. 

 

Future research directions include: 

1. Integrating Machine Learning: Using natural language processing (NLP) to automatically scrape 

news and government bulletins to update the GeoPolitical_Instability and Trade_Policy_Volatility nodes 

in real-time. 

2. Dynamic BNs: Extending the model to a Dynamic Bayesian Network (DBN) to capture the temporal 

evolution of risks over time. 

3. Fuzzy Logic Integration: Combining BNs with fuzzy logic to handle nodes with imprecise or linguistic 

states (e.g., "very high" uncertainty). 

4. Multi-Tier Transparency: Expanding the model to include deeper sub-tiers of the supply chain, which 

are often the most opaque and vulnerable. 

The journey towards a truly resilient aviation supply chain is continuous. Embracing advanced, probabilistic 

computational tools like Bayesian Networks is not merely an option but a necessity for navigating the turbulent 

skies of global trade. 
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