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Abstract––The paper presents use of two recent data driven techniques namely Model Tree and Support Vector 

Regression to forecast stream flow at two different locations one in Narmada river basin and the other location in 

Krishna river basin of India. The stream flow models are developed using the previous values of measured stream flow 

and rainfall to forecast stream flow one day in advance. All the models (total 63) show reasonable accuracy as evident by 

high values of correlation coefficient, coefficient of efficiency and low value of root mean square error. Additionally 

scatter plots and hydrographs were also drawn to asses the model performance. The models developed using Support 

Vector Regressions performed better compared to MT models. The effect of rainfall as an input for forecasting stream 

flow was also investigated. 
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I. INTRODUCTION 
Data-driven modeling can be considered as an approach that focuses on using the Machine Learning methods in 

building models that would complement or replace the “knowledge-driven” models describing physical behavior [1. 
Examples of the most common methods used in data-driven modeling of river basin systems are: statistical method which is 
perhaps the oldest followed by the techniques which try to imitate human brain and perception like Artificial Neural 
Networks, fuzzy rule-based systems, Genetic Programming, Support Vector Machines (or regression) and  Model Trees [2]. 
Due to availability of data these methods are gaining popularity since last two decades or so. ANN is now an established 
technique in the field of Hydrology as it is being used since last 2 decades or so. However it has been shown by [3] and [4] 
that a technique of Model Tree can also yield comparable results for stream flow forecasting. The recent technique of 

Support Vector Machines (SVM) has shown promising results in forecasting of waves by [5] and multi-time scale stream 
flow predictions by [6]. The present work aims at forecasting of stream flow one day in advance at two stations in India 
using previous values of stream flow and rainfall and the techniques of Support Vector Regression (SVR) and M5 Model 
Tress (MT). The first station, Rajghat is in the Narmada river basin of India and the second one at Paud, in the Krsihna river 
basin of India. Results of both approaches will be compared for accuracy of prediction. It is a first work of its kind where in 
MT and SVR are compared for stream flow forecasting to our knowledge. The succeeding section will present brief 
information about SVR and MT techniques along with their applications particularly for stream flow forecasting followed by 
section on study area and data. The model formulation will be discussed later followed by results and discussion. The 

concluding remarks will be presented in the last. 

II. SUPPORT VECTOR REGRESSION (SVR) 

The support vector machine (SVM), introduced by [7] is a technique used in pattern recognition and is one of the 
most attractive forecasting tools in recent years, but applications are rare in the field of civil engineering. Support vector 

machines are methods of supervised learning, which are commonly used for classification and regression purposes. Their 
formulation embodies the Structural Risk Minimization (SRM) Principle, which has been shown to be superior to traditional 
Empirical Risk Minimization (ERM) Principle, employed by many of the other modeling techniques like ANN.  

SRM minimizes the error on the training data. It is this difference which equips SVM with a greater ability to 
generalize, which is the goal in statistical learning. SVMs were first developed to solve the classification problem, but 
recently they have been extended to the domain of regression problems. A SVM constructs a separating hyperplane between 
the classes in the n-dimensional space of the inputs. This hyperplane maximizes the margin between the two data sets of the 
two input classes. The margin is defined as the distance between the two parallel hyperplanes, on each side of the separating 

one, pushed against each of the two datasets. Simply, the larger the margin, the better the generalization error of the classifier 
would be. For the case of regression, the only difference is that SVM attempts to fit a curve, with respect to the kernel used 
in the SVM, on the data points such that the points lie between the two marginal hyperplanes as much as possible, the aim is 
to minimize the regression error. In the present work a least squares version of SVM‟s for the function estimation problem 
(LS-SVR) of prediction of stream flow is used. While in classical SVM‟s many support values are zero (nonzero values 
correspond to support vectors), in least squares SVM‟s the support values are proportional to the errors.  

Radial Basis Kernel is used for calibrating the SVR models. Readers are referred to [8] for details of SVM and 
SVR. The details are not provided in this paper to avoid repetition. [9] used support vector machines for Lake water level 

prediction.[10] used SVM for long term discharge prediction. [11] employed SVR for real time fold stage forecasting. [6] 
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used SVR for multi-time scale stream flow predictions. Recurrent support vector machines were used by [12] for rainfall 
forecasting. [13] used distributed Support Vector Regression for river stage prediction.  

III. M5 MODEL TREE (MT) 
The M5 Model Tree is a data driven method based on the idea of decision tree that follows the principle of 

recursive partitioning of input space using entropy-based measures, and finally assigning class labels to resulting subsets. M5 
algorithm splits the parameter space into areas (subspaces) and builds in each of them a local specialized linear regression 
model. The splitting in MT follows the idea used in building a decision tree, but instead of the class labels it has linear 
regression functions at the leaves, which can predict continuous numeric attributes. Model trees generalize the concepts of 

regression trees which have constant values at their leaves. So, they are analogous to piecewise linear functions (and hence 
non-linear). Model trees learn efficiently and can tackle tasks with very high dimensionality –– up to hundreds of attributes. 
The major advantage of model trees over regression trees is that model trees are much smaller than regression trees, the 
decision strength is clear, and the regression functions do not normally involve many variables [14]. The M5 algorithm is 
used for inducing a model tree.  Readers are referred to [15] for details of the procedure. In Hydrology the application of M5 
Model Trees is relatively new and more research in this field is called for. The works published so far are by [3], [16], [17], 
[14] and [4] which are related to rainfall-runoff modeling, flood forecasting, flow predictions, water level discharge 
relationship and forecasting of runoff. As discussed in „Introduction‟ the present work aims at comparing results of both the 

approaches for forecasting of stream flow one day in advance at two locations distinctly apart in the country of India. 

IV. STUDY AREA AND DATA 
The present work deals with forecasting of stream flow at 2 stations, namely Rajghat and Paud  in Narmada river 

basin and Krishna river basin of India respectively.  Narmada,  the largest west flowing and seventh largest river  in India, 
covers a large area of Madhya Pradesh state besides some area of Maharashtra state & Gujarat state before entering into the 
Gulf of Camby, Arabian Sea. Narmada Basin lies between East Longitudes 720 32‟ to 820 45„and North Latitudes 210 20‟ to 
230 45‟. The total catchment area covered is 98796 Sq.Km. The observations of daily average stream flow values and rainfall 
pertained to Rajghat on Narmada River were available from the records of the Central Water Commission, Bhopal, India for 
the years of 1987 to 1997. India is peculiar by its monsoon season in which it receives rainfall almost for 4 months all over 
the country. The Narmada catchment receives rainfall starting from late June continuing till early October.  

Krishna Basin is India‟s forth-largest river basin, which covers 258,948 Km2 of southern India. Krishna river 
originates in the Western Ghats at an elevation of about 1337 m just north of Mahabaleshwar in Maharashtra, India about 64 

km from the Arabian Sea and flows for about 1400 km and outfalls into the Bay of Bengal traversing three states Karnataka 
(113,271 Km2), Andhra Pradesh (76,252 Km2), Maharashtra (69,425 Km2). The selected rain gauge and discharge station 
Paud is on Mula river in the Pune district of Maharashtra State of India. The data was collected by Surface and Ground 
Water Hydrology department, through Hydro-Project, Nasik [18] . Total fourteen years data for daily rainfall and discharge 
(stream flow) from the year 1994 to 2007 was available for developing the stream flow models. The location under 
consideration receives rainfall in the monsoon months starting from early June continuing till early September. 

V. MODEL FORMULATION 
After examining the data it was found that the average discharge values for the monsoon months of July to October 

were differing considerably. Table 1 shows statistical parameters of the observed flow at Rajghat and Paud for the months of 
July to October (July to September for Paud) which indicates a large variation as a result of which separate monthly models 
were decided to be developed for the months of July, August, September and October (July, August and September for 

Paud). The next task was to determine the number of antecedent discharges as well as rainfalls to be used for predicting 
discharge one day in advance. Input data selection can be done in a variety of ways such as by noticing the significant lag 
effect through evaluation of the serial correlations, saliency analysis, and cross-correlation statistics and also by trials. The 
method of trials was used in this work as it is simpler and does not assume linearity underlying the definition of the 
correlation coefficients. For a monthly model it was started with 2 previous values of discharges (the current day and one 
previous day) as inputs to predict discharge of the next day. To these two values of discharges then 2 previous values of 
rainfall (the current day and one previous day) were added one by one while discharge on the next day was maintained as 
output. In the next step 3 and 4 previous values of discharges (the current day and two and three previous days respectively) 
were used one by one. Finally these discharges were also supplemented by 2 previous rainfall values as above though the out 

put was discharge on the next day in every case. It was found that addition of any further stream flow or rainfall value 
(previous) did not further improve the accuracy of the developed models in prediction of stream flow for both SVR and MT. 
Thus in all 9 models were developed for one month. In functional form it can be stated as  
Q t+1 = f (Q t, Q t-1) 
Q t+1 = f (Q t, Q t-1, Rt) 
Q t+1 = f (Q t, Q t-1, Rt, Rt-1) 
Q t+1 = f (Q t, Q t-1, Q t-2) 
Q t+1 = f (Q t, Q t-1, Q t-2, Rt) 

Q t+1 = f (Q t, Q t-1, Q t-2, Rt, Rt-1) 
Q t+1 = f (Q t, Q t-1, Q t-2, Qt-3) 
Q t+1 = f (Q t, Q t-1, Q t-2, Qt-3, Rt) 
Q t+1 = f (Q t, Q t-1, Q t-2, Qt-3, Rt, Rt-1) 
Where Q = discharge and R = Rainfall  
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For four months of July, August, September and October total 36 models were developed at Rajghat. For Paud in 
Krishna river basin data for the month of October was not available and hence models for July, August and September 
months were developed (total 27). Each model was calibrated using approximately 70% of data and the remaining 30% of 
data was used to test the model. Details of all the models viz., inputs, training and testing data for Rajghat and Paud are 

shown in table 2 and 3 respectively.  The Least Square – Support Vector Machines toolbox based on MATLAB is used in 
the present work. The readers are directed to [19] for details of LS-SVM and [20] for the LS-SVM tool box. The models 
were developed using M5 Model Trees following the same data division to compare the results of both the approaches. The 
software WEKA developed by University of Waikato, New Zealand was used to develop M5 Model Trees models.  

VI. MODEL ASSESSMENT 
Results of the developed models in testing were assessed by plotting the scatter plot between the observed and 

predicted flow and drawing the hydrograph of observed and predicted stream flow by both the approaches. The coefficient of 
correlation between the observed and predicted stream flow was also calculated to judge the accuracy of model prediction 
quantitatively. Need for more than one model assessment technique has been emphasized by [21] Dawson and Wilby (2001). 
Accordingly, two conventional evaluation criteria, RMSE (root mean square error) and E (coefficient of efficiency), were 
used in the present study to measure the performances of models in testing. 
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Where, Y = observed stream flow, Ŷ = Predicted Stream flow, Y = mean of the observed stream flow, n = total number of 
target and output pairs. 

RMSE provides a quantitative indication of the model absolute error in terms of the units of the variable, with the 
characteristic that larger errors receive greater attention than smaller ones. This characteristic can help eliminate approaches 
with significant errors [13]. Lower the value of RMSE, greater is the accuracy. CE does not depend on data scale and hence 
is more suited when different scales are involved [21]. CE indicates prediction capabilities of values different from the mean 

and varies from - to +1. CE of 0.9 and above is very satisfactory and that of below 0.8 is unsatisfactory.  

VII. RESULTS AND DISCUSSION 
The calibrated models were tested with unseen values of inputs and results were obtained. For Rajghat models it 

was found that the influence of previous values of stream flow on the prediction accuracy was fluctuating for SVR models. 
Table 4 shows results of all the models developed for Rajghat (Model 1 to 36) with both SVR and MT approaches. For July 
models (Models 1, 4, 7) the prediction accuracy decreased with increase in previous values of stream flow as inputs (r = 0.9, 
0.86 and 0.84 respectively). For August (Model 10, 13, 16) similar performance was observed (r = 0.73, 0.7 and 0.68 

respectively). However for September (Model 19, 22, 25) the r value increased for one additional stream flow as input (0.74 
to 0.83) but then decreased for further addition of stream flow as input (0.83 to 0.79). For October the model accuracy first 
decreased slightly (0.91 to 0.9) and then increased (0.9 to 0.92) with increase in the stream flow values as inputs.  It can also 
be observed that by adding 1 or 2 values previous values of rainfall as inputs did not necessarily improve the stream flow 
forecasting accuracy almost for all the models. On the other hand in some models (for eg. Model No. 25, 26, 27) accuracy of 
prediction decreased as indicated by decreasing values of the correlation coefficient from 0.79 to 0.75 to 0.69.  

For models developed using M5 Model tree algorithm a similar fluctuating trend was observed for models with 
previous stream flow used as input in that the accuracy of prediction neither increased nor decreased consistently with 

increase in number of previous stream flow values as inputs. Similarly addition of rainfall values as inputs did not improve 
the accuracy of prediction significantly though it did not decrease as in case of SVR models. The reason may be duplication 
of information by adding rainfall as input along with stream flow values. The cause of stream flow is rainfall particularly in 
the monsoon months and the effect (stream flow) is being modeled by using both cause and effect (rainfall and runoff) 
simultaneously making the rainfall information ineffective in predicting the stream flow. One more reason may be absence 
of rainfall values in many data sets particularly in the month of October which shows constant results after addition of 
rainfall values. It may also be noted that rainfall does not occur on all days of monsoon months.  

When results of both the approaches were compared it was found that SVR is superior to MT in majority of 

models as evident by higher „r‟ and „CE values and less „RMSE‟ values. When results of each monthly model were 
compared for SVR approach, model 1(ip2july) with 2 previous values of stream flow as inputs seems to be the best with 
highest „r‟ and CE values and lowest RMSE value. However in MT approach model 8 (ip4rtjuly) with 4 previous values of 
stream flow and one previous rainfall as input seems to be the best though it was less accurate as compared to Model 1 
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(ip2july). For the month of August, model 10 (ip2august) with 2 previous values of stream flow as inputs wins the race for 
SVR model where as model 13 (ip3august) was the best amongst MT models. In August models MT results were at par with 
SVR results except RMSE which slightly more for MT model. For the month of September model 24 (ip3rtrt-1september) 
was the best in SVR models while model 22 (ip3sept) wins the race in MT models. In this case also results of SVR model 

(24) are better than MT model (22). For the month of October results of 34 (ip4oct) were the best for both SVR and MT 
approaches with SVR results slightly better. It may be noted that results are not mentioned in brackets to avoid repetition of 
information provided in table 4. Thus for July model 1, for August model 10, for September model 24 and for October model 
34 all with SVR approach are the best though results of MT are not far behind. Out of all the models (both SVR and MT) 
model 34 (ip4oct) developed using SVR approach seems to be the best with highest „r‟ (0.92), Highest „CE‟ (0.84) and 
lowest „RMSE‟ (105.68 m3/s). Same model developed using MT shows the best results amongst all MT models with r = 
0.91, CE = 0.81, and RMSE = 113.38 m3/s. It may be noted that for both the approaches the same model was the best (model 
34) when the other error measures of CE and RMSE were compared. Results of August models are the worst amongst all 
Rajghat SVR models where as results of July models were found to be the least in MT models. By observing table 1 it seems 

the average stream flow and standard deviation values play a role in accuracy of the developed models. The month of 
October which has the least average and the least standard deviation exhibits the best performance by both the approaches.  

Figure 1 shows scatter plot for Rajghat July model (model1, ip2 july) which indicates that though both the 
approaches under predict the extreme events SVR approach is better. Figure 2 shows hydrograph of Rajghat October model 
(model 34, ip4oct) where in SVR predicts the peak (1582 m3/s) better (1520 m3/s) than MT approach (1319 m3/s). 

For Paud models it was found that for the month of July there was an increase in the value of correlation 
coefficient from 0.79 to 0.82 for SVR models and 0.79 to 0.85 for MT models when the number of previous discharges was 
increased (Model 37, 40, 43). With addition of two previous values of rainfall one by one as inputs there was again a slight 

increase in correlation coefficient in each case (Model 37 to 45). Model no. 44 with 4 previous values of discharges and 1 
previous rainfall as inputs, (ip4rtjuly) with MT approach seems to be best amongst all July models with correlation 
coefficient equal to 0.84, coefficient of efficiency equal to 0.64 and root mean squared error equal to 37.61 m3/s. The SVR 
model results though not far behind with r = 0.83, CE = 0.64 and RMSE = 37.51 m3/s. The peak discharge of 328 m3/s was 
predicted as 199 m3/s bye the SVR model and 190 m3/s by the MT model. Thus SVR is superior in predicting the peak 
values.  

For August however such a trend was not obtained and the „r‟ value was increased from 0.55 to 0.83 with addition 
of 2nd day stream flow values (Model 46 and 49) but then decreased with subsequent addition of one more stream flow value 

from 0.83 to 0.67 (Model 49 and 52) for SVR approach. However for MT approach values consistently increased from 0.45 
to 0.58 for the same models.  Figure 4 shows hydrograph of August model in testing. Similarly there was not much change 
rather a decrease in „r‟ values after addition of rainfall values was also observed in many cases of August models (Models 46 
to 54). Model No. 49 with 3 previous values discharges as inputs, (ip3august) using SVR approach seems to be best amongst 
all August models with correlation coefficient equal to 0.83, coefficient of efficiency equal to 0.68 and root mean squared 
error equal to 51.56 m3/s. For MT approach model 50 (ip3rtaugust) was found to be the best with r = 0.71, CE = 0.35 and 
RMSE = 75.46 m3/s. Maximum discharge of 575 m3/s was predicted as 500 m3/s by SVR approach and 229 m3/s by the MT 
approach.  

For September models it was observed that the prediction accuracy increases with increase in number of previous 
stream flow values as inputs (Models 55, 58 and 61) with r = 0.72, 0.75 and 0.81 respectively for SVR models. Same trend 
was noticed for MT models as well with r = 0.73, 0.76 and 0.82 respectively. When the rainfall values were used as 
additional inputs the accuracy of prediction increased for one previous rainfall value in case of Model 56 for both SVR and 
MT models. The accuracy was then decreased with addition of one more rainfall value (model No. 57) for both SVR and MT 
approach. The trend however was not continued for further models (Models 59, 60 and 62, 63), which actually showed 
decrease in performance with addition of rainfall values. Out of all September models model 56 with 2 previous of 
discharges and 1 previous rainfall as inputs, (ip2rtsept) was found to be the best with „r‟ value of 0.91, CE of 0.81 and very 
low RMSE of 3.8 m3/s with SVR approach. The MT model for the same inputs exhibit a similar performance with r = 0.9, 

CE = 0.81 and RMSE = 3.88 m3/s. Figure 3 shows hydrograph of model 56 (ip2rtsept) in testing. The maximum discharge of 
74m3/s was predicted as 79 m3/s by SVR and 61 m3/s by MT model in this case.  

Thus for July model 44 (MT), for August model 49 (SVR) and for September model 56 (SVR) were the best by 
virtue of their highest „r‟ and „CE‟ values and lowest „RMSE‟ values. The best model out of all Paud models was model 56 
(ip2sept) with highest „r‟ and „CE‟ and lowest „RMSE‟.  It can be seen from table 1 that the month of September has the 
lowest average rainfall as well as the lowest standard deviation. The better performance of the model can perhaps be 
attributed to these two statistical parameters. Consolidated results of all the Paud models are presented in table 5. Figure 4 
shows typical model tree developed for model 34 (ip4oct) and figure 5 shows linear models developed at the leaves (of 

figure 6).   
Based on the above discussion it can be said that the over all performance of SVR models is better as compared to 

MT models. As mentioned in the „Introduction‟ the underlying principal SRM (Structural Risk Minimization) seems to make 
SVR perform better compared to MT.  

VIII. CONCLUDING REMARKS 
The paper presented comparison of stream flow models at 2 stations Rajghat in Narmada basin and Paud in 

Krishna river of India developed using two data driven techniques namely SVR and M5 Model Trees. The models were 
developed to forecast stream flow one day in advance. All the models performed reasonably well in testing with a few 
exceptions. The SVR models perform better compared to MT models though marginally as evident by better correlation 
coefficient, Coefficient of efficiency and Root mean squared error of SVR models. It was found that addition of rainfall 
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values as inputs with the stream flow values did not improve the model accuracy significantly. The results of models seem to 
be influenced by average and standard deviation value of stream flow. For prediction of peaks SVR worked better as 
compared to MT. It can be said that the data driven techniques like Support Vector Regression (SVR) and M5 Model Trees 
(MT) are worth exploring further at least in the field of Hydrology 
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Table 1: Statistical Parameters of the Daily Observed Flow Data 

 

 

 

 

 

 

 

 

 

Month Rajghat Paud 

 Average 

(m
3
/s) 

Std. 

deviation 

skewness kurtosis Average 

(m
3
/s) 

Std. 

deviation 

skewness kurtosis 

July 2306.04 4265.93 3.86 17.81 38.6 62.59 3.45 16.62 

August 4179.81 4653.33 3.23 14.72 45.4 74.83 4.25 21.53 

September 3066.75 3876.58 7.64 78.81 15.4 21.03 4.61 23.46 

October 743.76 704.01 5.63 50.20 - - - - 

http://www.mahahp.org/
http://www.esat.kuleuven.be/sista/lssvmlab/
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Table2: Details of Rajghat Models 

 

 

 
 

Sr. No. Month/Model Inputs Training data Testing data 

1.  ip2july Qt, Qt-1 223 96 

2.  ip2rtjuly Qt, Qt-1, Rt 223 96 

3.  ip2rtrt-1july Qt, Qt-1, Rt, Rt-1 223 96 

4.  Ip3july Qt, Qt-1,Qt-2 215 93 

5.  Ip3rtjuly Qt, Qt-1, Qt-2,Rt 215 93 

6.  Ip3rtrt-1july Qt, Qt-1, Qt-2,Rt, Rt-1 215 93 

7.  Ip4july Qt, Qt-1,Qt-2,Qt-3 207 90 

8.  Ip4rtjuly Qt, Qt-1, Qt-2, Qt-3, Rt 207 90 

9.  Ip4rtrt-1july Qt, Qt-1, Qt-2, Qt-3, Rt, Rt-1 207 90 

10.  ip2august Qt, Qt-1 223 96 

11.  ip2rtaugust Qt, Qt-1, Rt 223 96 

12.  ip2rtrt-1august Qt, Qt-1, Rt, Rt-1 223 96 

13.  Ip3august Qt, Qt-1,Qt-2 215 93 

14.  Ip3rtaugust Qt, Qt-1, Qt-2,Rt 215 93 

15.  Ip3rtrt-1august Qt, Qt-1, Qt-2,Rt, Rt-1 215 93 

16.  Ip4august Qt, Qt-1,Qt-2,Qt-3 207 90 

17.  Ip4rtaugust Qt, Qt-1, Qt-2, Qt-3, Rt 207 90 

18.  Ip4rtrt-1august Qt, Qt-1, Qt-2, Qt-3, Rt, Rt-1 207 90 

19.  ip2sept Qt, Qt-1 215 93 

20.  ip2rtsept Qt, Qt-1, Rt 215 93 

21.  ip2rtrt-1sept Qt, Qt-1, Rt, Rt-1 215 93 

22.  Ip3sept Qt, Qt-1,Qt-2 207 90 

23.  Ip3rtsept Qt, Qt-1, Qt-2,Rt 207 90 

24.  Ip3rtrt-1sept Qt, Qt-1, Qt-2,Rt, Rt-1 207 90 

25.  Ip4sept Qt, Qt-1,Qt-2,Qt-3 200 86 

26.  Ip4rtsept Qt, Qt-1, Qt-2, Qt-3, Rt 200 86 

27.  Ip4rtrt-1sept Qt, Qt-1, Qt-2, Qt-3, Rt, Rt-1 200 86 

28.  ip2oct Qt, Qt-1 203 87 

29.  ip2rtoct Qt, Qt-1, Rt 203 87 

30.  ip2rtrt-1oct Qt, Qt-1, Rt, Rt-1 203 87 

31.  Ip3oct Qt, Qt-1,Qt-2 196 84 

32.  Ip3rtoct Qt, Qt-1, Qt-2,Rt 196 84 

33.  Ip3rtrt-1oct Qt, Qt-1, Qt-2,Rt, Rt-1 196 84 

34.  Ip4oct Qt, Qt-1,Qt-2,Qt-3 189 81 

35.  Ip4rtoct Qt, Qt-1, Qt-2, Qt-3, Rt 189 81 

36.  Ip4rtrt-1oct Qt, Qt-1, Qt-2, Qt-3, Rt, Rt-1 189 81 
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Table 3 Details Of Paud Models 

 

 

 

Sr. No. Month/Model Inputs Training data Testing data 

37.  ip2july Qt, Qt-1 247 104 

38.  ip2rtjuly Qt, Qt-1, Rt 247 104 

39.  ip2rtrt-1july Qt, Qt-1, Rt, Rt-1 247 104 

40.  Ip3july Qt, Qt-1,Qt-2 225 97 

41.  Ip3rtjuly Qt, Qt-1, Qt-2,Rt 225 97 

42.  Ip3rtrt-1july Qt, Qt-1, Qt-2,Rt, Rt-1 225 97 

43.  Ip4july Qt, Qt-1,Qt-2,Qt-3 210 97 

44.  Ip4rtjuly Qt, Qt-1, Qt-2, Qt-3, Rt 210 97 

45.  Ip4rtrt-1july Qt, Qt-1, Qt-2, Qt-3, Rt, Rt-1 210 97 

46.  ip2august Qt, Qt-1 250 107 

47.  ip2rtaugust Qt, Qt-1, Rt 250 107 

48.  ip2rtrt-1august Qt, Qt-1, Rt, Rt-1 250 107 

49.  Ip3august Qt, Qt-1,Qt-2 220 94 

50.  Ip3rtaugust Qt, Qt-1, Qt-2,Rt 220 94 

51.  Ip3rtrt-1august Qt, Qt-1, Qt-2,Rt, Rt-1 220 94 

52.  Ip4august Qt, Qt-1,Qt-2,Qt-3 228 98 

53.  Ip4rtaugust Qt, Qt-1, Qt-2, Qt-3, Rt 228 98 

54.  Ip4rtrt-1august Qt, Qt-1, Qt-2, Qt-3, Rt, Rt-1 228 98 

55.  ip2sept Qt, Qt-1 173 75 

56.  ip2rtsept Qt, Qt-1, Rt 173 75 

57.  ip2rtrt-1sept Qt, Qt-1, Rt, Rt-1 173 75 

58.  Ip3sept Qt, Qt-1,Qt-2 147 63 

59.  Ip3rtsept Qt, Qt-1, Qt-2,Rt 147 63 

60.  Ip3rtrt-1sept Qt, Qt-1, Qt-2,Rt, Rt-1 147 63 

61.  Ip4sept Qt, Qt-1,Qt-2,Qt-3 142 80 

62.  Ip4rtsept Qt, Qt-1, Qt-2, Qt-3, Rt 142 80 

63.  Ip4rtrt-1sept Qt, Qt-1, Qt-2, Qt-3, Rt, Rt-1 142 80 
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Table 4: Results of Rajghat Models 

 

 

 

Sr. 

No. 

Month/Model Inputs rSVM CE RMSE r MT CE RMSE 

1.  ip2july Qt, Qt-1 0.9 0.81 2328.11 0.64 0.36 4228.93 

2.  ip2rtjuly Qt, Qt-1, Rt 0.87 0.75 2642.31 0.67 0.41 4085.3 

3.  ip2rtrt-1july Qt, Qt-1, Rt, Rt-1 0.86 0.73 2757.95 0.65 0.36 4254.21 

4.  ip3july Qt, Qt-1,Qt-2 0.86 0.73 2767 0.65 0.35 4335.26 

5.  iIp3rtjuly Qt, Qt-1, Qt-2,Rt 0.86 0.74 2773.71 0.65 0.36 4328.28 

6.  ip3rtrt-1july Qt, Qt-1, Qt-2,Rt, Rt-1 0.8 0.62 3321.62 0.65 0.36 4328.28 

7.  ip4july Qt, Qt-1,Qt-2,Qt-3 0.84 0.71 2944.71 0.65 0.35 4393.48 

8.  ip4rtjuly Qt, Qt-1, Qt-2, Qt-3, Rt 0.8 0.62 3386.27 0.79 0.63 3318.96 

9.  ip4rtrt-1july Qt, Qt-1, Qt-2, Qt-3, Rt, Rt-1 0.81 0.61 3399.5 0.65 0.35 4393.48 

10.  ip2august Qt, Qt-1 0.73 0.52 2701.3 0.7 0.48 2817.34 

11.  ip2rtaugust Qt, Qt-1, Rt 0.72 0.48 2817.35 0.7 0.48 2817.34 

12.  ip2rtrt-1august Qt, Qt-1, Rt, Rt-1 0.72 0.5 2749.88 0.7 0.48 2817.34 

13.  ip3august Qt, Qt-1,Qt-2 0.7 0.47 2825.17 0.73 0.51 2743.46 

14.  ip3rtaugust Qt, Qt-1, Qt-2,Rt 0.68 0.44 2950.23 0.7 0.49 2803.16 

15.  ip3rtrt-1august Qt, Qt-1, Qt-2,Rt, Rt-1 0.71 0.49 2797.88 0.73 0.51 2743.46 

16.  ip4august Qt, Qt-1,Qt-2,Qt-3 0.68 0.43 3000.79 0.73 0.51 2789.48 

17.  ip4rtaugust Qt, Qt-1, Qt-2, Qt-3, Rt 0.69 0.46 2927.77 0.73 0.51 2789.48 

18.  ip4rtrt-1august Qt, Qt-1, Qt-2, Qt-3, Rt, Rt-1 0.7 0.43 3011.8 0.73 0.51 2789.48 

19.  ip2sept Qt, Qt-1 0.74 0.44 1144.67 0.73 0.49 1111.08 

20.  ip2rtsept Qt, Qt-1, Rt 0.74 0.52 1081.2 0.73 0.49 1111.08 

21.  ip2rtrt-1sept Qt, Qt-1, Rt, Rt-1 0.74 0.49 1113.35 0.72 0.38 1230.26 

22.  ip3sept Qt, Qt-1,Qt-2 0.83 0.52 927.7 0.77 0.53 913.35 

23.  ip3rtsept Qt, Qt-1, Qt-2,Rt 0.84 0.52 924.33 0.77 0.53 913.35 

24.  ip3rtrt-1sept Qt, Qt-1, Qt-2,Rt, Rt-1 0.84 0.61 827.47 0.76 0.27 1137.14 

25.  ip4sept Qt, Qt-1,Qt-2,Qt-3 0.79 0.53 818.71 0.67 0.37 949.05 

26.  ip4rtsept Qt, Qt-1, Qt-2, Qt-3, Rt 0.75 0.46 877.32 0.68 0.42 911.69 

27.  ip4rtrt-1sept Qt, Qt-1, Qt-2, Qt-3, Rt, Rt-1 0.69 0.43 904.48 0.67 0.37 949.05 

28.  ip2oct Qt, Qt-1 0.91 0.77 123.92 0.89 0.74 131.43 

29.  ip2rtoct Qt, Qt-1, Rt 0.91 0.73 133.65 0.89 0.74 131.43 

30.  ip2rtrt-1oct Qt, Qt-1, Rt, Rt-1 0.89 0.73 134.46 0.89 0.74 131.43 

31.  ip3oct Qt, Qt-1,Qt-2 0.9 0.8 117.03 0.87 0.72 137.04 

32.  ip3rtoct Qt, Qt-1, Qt-2,Rt 0.85 0.71 138.93 0.87 0.72 137.04 

33.  ip3rtrt-1oct Qt, Qt-1, Qt-2,Rt, Rt-1 0.85 0.7 141.79 0.87 0.72 137.04 

34.  ip4oct Qt, Qt-1,Qt-2,Qt-3 0.92 0.84 105.68 0.91 0.81 113.38 

35.  ip4rtoct Qt, Qt-1, Qt-2, Qt-3, Rt 0.9 0.8 119.02 0.91 0.81 113.38 

36.  ip4rtrt-1oct Qt, Qt-1, Qt-2, Qt-3, Rt, Rt-1 0.9 0.79 121.07 0.91 0.81 113.38 
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Table 5: Results of Paud Models 

 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Sr. No. Month/Model Inputs rSVM CE RMSE r MT CE RMSE 

37.  ip2july Qt, Qt-1 0.79 0.63 37.66 0.79 0.62 38.07 

38.  ip2rtjuly Qt, Qt-1, Rt 0.8 0.61 36.62 0.82 0.61 38.42 

39.  ip2rtrt-1july Qt, Qt-1, Rt, Rt-1 0.82 0.59 39.15 0.82 0.61 38.42 

40.  ip3july Qt, Qt-1,Qt-2 0.8 0.63 37.94 0.8 0.63 38.18 

41.  ip3rtjuly Qt, Qt-1, Qt-2,Rt 0.81 0.62 38.72 0.83 0.65 37.36 

42.  ip3rtrt-1july Qt, Qt-1, Qt-2,Rt, Rt-1 0.81 0.6 39.64 0.81 0.62 38.61 

43.  ip4july Qt, Qt-1,Qt-2,Qt-3 0.82 0.66 36.57 0.85 0.7 34.21 

44.  ip4rtjuly Qt, Qt-1, Qt-2, Qt-3, Rt 0.83 0.64 37.61 0.84 0.64 37.51 

45.  ip4rtrt-1july Qt, Qt-1, Qt-2, Qt-3, Rt, Rt-1 0.83 0.62 38.53 0.82 0.66 36.75 

46.  ip2august Qt, Qt-1 0.55 0.3 79.24 0.45 0.089 90.28 

47.  ip2rtaugust Qt, Qt-1, Rt 0.53 0.28 80.25 0.45 0.089 90.28 

48.  ip2rtrt-1august Qt, Qt-1, Rt, Rt-1 0.5 0.25 82 0.42 0.03 93.14 

49.  ip3august Qt, Qt-1,Qt-2 0.83 0.68 51.56 0.55 0.28 77.25 

50.  ip3rtaugust Qt, Qt-1, Qt-2,Rt 0.67 0.42 70.19 0.71 0.31 75.46 

51.  ip3rtrt-1august Qt, Qt-1, Qt-2,Rt, Rt-1 0.69 0.41 69.72 0.71 0.27 78.09 

52.  ip4august Qt, Qt-1,Qt-2,Qt-3 0.67 0.44 66.75 0.58 0.31 73.77 

53.  ip4rtaugust Qt, Qt-1, Qt-2, Qt-3, Rt 0.64 0.41 68.25 0.61 0.35 71.76 

54.  ip4rtrt-1august Qt, Qt-1, Qt-2, Qt-3, Rt, Rt-1 0.65 0.41 68.15 0.62 0.34 71.97 

55.  ip2sept Qt, Qt-1 0.72 0.52 8.35 0.73 0.51 8.48 

56.  ip2rtsept Qt, Qt-1, Rt 0.91 0.81 3.8 0.9 0.81 3.88 

57.  ip2rtrt-1sept Qt, Qt-1, Rt, Rt-1 0.7 0.49 8.64 0.73 0.51 8.47 

58.  ip3sept Qt, Qt-1,Qt-2 0.75 0.49 9.42 0.76 0.54 8.97 

59.  ip3rtsept Qt, Qt-1, Qt-2,Rt 0.73 0.51 9.24 0.66 0.43 10 

60.  ip3rtrt-1sept Qt, Qt-1, Qt-2,Rt, Rt-1 0.7 0.49 9.43 0.42 0.08 13.82 

61.  ip4sept Qt, Qt-1,Qt-2,Qt-3 0.81 0.42 10.04 0.82 0.59 8.47 

62.  ip4rtsept Qt, Qt-1, Qt-2, Qt-3, Rt 0.72 0.52 9.14 0.6 0.35 10.58 

63.  ip4rtrt-1sept Qt, Qt-1, Qt-2, Qt-3, Rt, Rt-1 0.69 0.47 9.53 0.59 0.35 10.58 
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Figure 1 Scatter plot for Rajghat July model (Model 1 ip2july) 
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Figure 2 Hydrograph for Rajghat October model (Model 34 ip4oct) 
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Figure 3 Hydrograph for Paud September model (Model 56 ip3tsept) 

 

 

 
 

Figure 4 Typical Model Tree for Rajghat October Model (Model 34 ip4oct) 
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Figure 5 MT Models developed for Rajghat October Model (Model 34 ip4oct) 

 
(Note: The first number is the number of samples in the subset sorted to this leave and the second is root mean 

squared error (RMSE) of the corresponding linear model divided by the standard deviation of the samples subset for which it 
is built (expressed in percent)). 
 

 

 
 
 

 

 

 

 


