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Abstract––A novel method for generating the state space evolution of a nonlinear system from the   output time series    

using    the Recurrent Neural   Network (RNN) model, trained with improved nonlinear Kalman filter is proposed in this 

paper.  The identification of nonlinear and chaotic systems from the output time series is an important and challenging 

problem. Nonlinear identification using neural network models, particularly Recurrent Neural Networks (RNN), trained 

with suitable algorithms, have received particular attention due to their potentialities to approximate nonlinear 

behaviour. It is also well known that the evolution of state space provides more information on the behaviour of the 

systems.. The neural network weights are estimated using the Extended Kalman Filter (EKF) algorithm. The 

performance of the EKF algorithm is further improved by the Expectation Maximization (EM) method, which is used to 

derive the initial states and covariance of the Kalman filter. The approach provides an accurate identification as well as 

results in a smaller Mean Squares Error (MSE).  The minimum embedding dimension of the time series is calculated 

using the method of false nearest neighbours, which helps to decide the number of states required to model the system. By 

allowing the system to freewheel driven by white noise, after the modelling, the state space evolution is produced.  A case 

study using the famous sunspot time series is carried out by the proposed algorithm and the Lyapunov exponents of the 

model are calculated, from the state space evolution. The results presented here confirms the efficacy of  the Extended 

Kalman Filter algorithm combined with EM techniques in building a good RNN model for nonlinear identification of 

chaotic systems. 
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I. INTRODUCTION 
It is well known that the Rrecurrent neural networks can exactly approximate any nonlinear map, and has high 

convergence [2][15]. Accordingly, the  Neural Networks have been applied extensively  in the modelling and analysis of 
non-linear and chaotic system with great success. 

The Chaotic systems have been of interest to many researchers over years.  Chaos is a complex and unpredictable 
phenomena, which occur in non linear systems that are sensitive to their initial conditions [17].  The modelling of chaotic 
systems, based on the output time series is quite promising, since the output often represents the characteristics behaviour of 
the total system.    Artificial neural networks have the required self-learning capability to tune the network parameters (i.e. 
weights) to identify highly nonlinear and chaotic systems. [2][12] 

In the present work, the efficacy of modelling a chaotic system using dynamic neural networks has been 
demonstrated. The Sunspot time series is a collection of sunspot numbers tabulated each day along the years 1818 to 2000. 
The time series is inherently chaotic in nature [16].The system is modelled using the neural network system. The recurrent 
architecture also generates the state space evolution, while trying to arrive at the model of the output time series. The 

parameters of the neural network are estimated using the Extended Kalman Filter (EKF) algorithm, by choosing the weights 
of the neural network as the states of the Extended Kalman Filter.  Further, the Expectation Maximization algorithm is used 
to effectively arrive at the initial states and the state covariance, required in the EKF algorithm.  The recurrent network, 
shown in Fig. 1. Models the following system: 
 

 
 
The proposed neural network system models the chaotic time series effectively. The state variables continue to 

generate the state space evolution of the system, responsible for generating the time series. The minimum embedding 
dimension of the time series is calculated using the method of false nearest neighbours. The Lyapunov exponents, which 
characterize the behaviour of the system, are also calculated from the state space evolution and verified. The state space 

evolution shows that the sunspot time series is similar to the famous Rossler chaotic system.  
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II. RECURRENT NEURAL NETWORK AND TIME SERIES MODELING 
The recurrent networks have the potential to be used in unison in systems with dynamic elements and feedback [2]. 

In effect recurrent neural networks used for modelling or model based predictive control are multi-layer neural networks 
with a delay element in their feedback loop. Recurrent neural networks could be built with multi-layer networks in their 
feedback loop, creating a system where the structures compute in tandem. In recurrent network nodes are connected back to 
other nodes or themselves. The Information flow is multidirectional. Such networks inherently possess sense of time and 
memory of previous state(s).Biological nervous systems show high levels of recurrences .Hence the networks could be used 
in unison creating systems with both dynamic elements and feedback. The presence of feedback loops has a profound impact 

on the learning capability of the network and its performance. Moreover the feedback loops involve unit delay elements 
denoted by z-1, which results in a nonlinear dynamical behavior [15]. 
 

 
Fig.1. .Structure of RNN for modeling the state space evolution 

 
The present paper proposes a ne w approach to model the time series, simultaneously generating the state space as 

given in Eqn. (1) and (2) . The time series is modelled using the RNN and after the error stabiles to an acceptable value, the  
system is allowed to freewheel driven by white noise, when the state space evolution is generated[11]. The obvious question 
here is: how many state variables are required to represent  a system for which only the output  time series is known?  It is 
proposed to use the concept of self embedding dimensions [8], which can be computed readily from the output time series. 

 

III. MINIMUM EMBEDDING DIMENSION  
The minimum embedding dimension is calculated using the method of false nearest neighbours as explained 

below.    A set has embedding dimension n if n is the smallest integer for which it can be embedded into without intersecting 
itself[8]. Whitney‟s embedding theorem states that if a manifold has topological dimension 2 its embedding dimension is at 
most 2n. Taken‟s theorem [9] [10] states that the original dynamic properties of the attractor can be retained as long as the 

embedding dimension de > 2d+1 where d is the correlation dimension of the attractor‟s. Choosing an Embedding dimension 
can be done by the method of False Nearest Neighbours as explained by the following algorithm: 

1.  Measure the distances between a point and its nearest neighbour, as this dimension increases, this distance should 
not change, if the points are really nearest neighbours. 

2.  Define the distance between a point and its nearest neighbour as Rd.  It is calculated using the following formula  

 

 
Now add one more dimension and calculate the change in distance 

 

where NN indicates the nearest neighbour. We can now look at the relative change in the distance as a way to see if our 
points were not really close together but a projection form a higher state space .Define a threshold RT   as a criteria for false 
nearest neighbours  

 
 

Using this criterion one can  test our sequence of points and, as d increases, find where the percentage of nearest 
neighbours goes to 0. After finding out the percentage of false nearest neighbours a graph is plotted between the percentage 
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of false nearest neighbours and embedding dimension..The lowest point in the graph gives self  the minimum embedding 
dimension.[2] For the sun spot time series , Fig. 2 confirms that the self embedding dimension is 3 
  

 
 Fig. 2. Computation of the self embedding dimension from sun spot time series 

 

IV. MODELING THE TIME SERIES WITH EXTENDED KALMAN FILTER 
A. System representation 

Consider a discrete time non linear dynamic system, described by a vector difference equation with additive white 
Gaussian noise that models “unpredictable” disturbances. The Kalman filter deals with linear systems [5].We can see that 
Kalman filter needs modifications for adapting the nonlinear behavior of the system. The dynamic plant equation is given by 
the following nonlinear equations  

 
where xk is an n dimensional state vector uk is an m dimensional known input vector, and wk is a sequence of 

independent and identically distributed zero mean white Gaussian process noise with covariance 

 
The measurement equation is  

 

Where kv is the measurement noise with covariance 

 
The functions f and h  and the matrices  Q and R are assumed to be  known 

 

B. Extended Kalman Filter[5] 
The Extended Kalman filtering (EKF) process has been designed to estimate the state vector in a non linear 

stochastic difference model.[5]To estimate a process with non-linear difference and measurement relationships, we begin by 
writing new governing equations that linearize equation (3) and equation (5) 

Expanding the functions f and h along the Taylor series, one gets the following equations for the Extended Kalman 
filter. [5]. 

 

                       Where kx  and kz  are the actual state and measurement vectors, 
~

kx  and 
~

kz are the approximate state and 

measurement vectors.
^

kx  is an a posteriori estimate of the state at step k , wk and vk  are the random variables and represent 

the process and measurement noise. A is the Jacobean matrix of partial derivatives of f  with respect to x, H is the Jacobean 
matrix of partial derivatives of x with respect to h ,  W is the Jacobean matrix of partial derivatives of with respect to w ,  V is 
the Jacobean matrix of partial derivatives of with respect to v. 
 

C.EKF time update equations: 
Project the state ahead 

 
Project the error covariance ahead 
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D.EKF measurement update equations: 
Compute the Kalman gain 
 

 
 
One of the basic problems in the implementation of the EKF is the choice of the initial values of the state x and the 

state co-variance P. Since arbitrary choices can lead to the divergence of the filter, the present paper has used the EM 
algorithm [7] to compute the initial values of state and the state co variance. 
 

E. EM Algorithm 

The EKF Algorithm [5]  for training Multi Layer Perceptrons (MLPs) suffers from some  shortcomings, namely 
choosing the initial states and covariance x(0), P(0/-1)., along with the process error covariance Q and measurement error 
covariance R.  We propose to alleviate the problem by using the EM algorithm [6].  After computing the forward estimates 
in EKF, the  „‟Rauch-Tung- Striebel smoother‟‟[7] is executed on the same  data series  to do the following backward 
recursions. 

 
    

Finally the  values of x(0) and Q(0/-1) are given by          
                      

F. RNN Training Using EKF Algorithm for both the state space evolution and time series modelling 
In the modified Kalman algorithm the state and measurement equations are modified as follows:                                
             

Considering the parameter optimization as a state estimation as described above allows us to use the extended 
Kalman filter to update the weight estimates as well as the optimal hidden states. The augmented state vector is thus  
 

 
[w1 , w2 … wn , x1, x2, …xp]

T 

 

The algorithm is explained below: 
1. All the weights and states are initialized to small random values. The state covariant matrix P(0/-1) is initialized  to 

a diagonal matrix, with relatively small values. Let the covariant matrix for measurement noise is R and that of 
process noise is Q.  

2. As before compute the out put at each node of the recurrent network.  

3. Find the Jacobean matrix with respect to the state of the process and output at the current estimate of internal state 
and weights of the RNN. These matrices are given by H and A defined as follows. 
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The output of the neural network is computed using  

zk  =    g ( yk-n wn + l wl + w1x1 + w2x2 + w3x3), 

 
where g is any chosen non linear function.  The network works with EKF algorithm as per the equations described in section 
.II.B,  with the state vector x replaced by the weights of the RNN. 
 

V. LYAPUNOV EXPONENTS 
The Lyapunov Exponents of a system are a set of invariant geometric measures that describe the dynamical 

content of the system. In particular, they serve as a measure of how easy it is to perform prediction on the system under 
consideration. Lyapunov Exponents quantify the average rate of convergence or divergence of nearby trajectories in a global 

sense. A positive exponent implies divergence and a negative one implies convergence. Consequently, a system with 
positive exponents has positive entropy in that trajectories that are initially close together move apart over time. The more 
positive the exponent, the faster they move apart. Similarly, for negative exponents, the trajectories move together. A system 
with both positive and negative Lyapunov Exponent is said to be chaotic. [12] 
 
Formally the   Lyapunov Exponent can be defined by 

 
where xi  , is the ith state variable  of the system and f(xi) is the output of the system. 

 

VI. SYSTEM SIMULATION  
A. Sunspot Time series  

Sunspots appear as dark spots on the surface of the Sun. They typically last for several days, although very large 
ones may live for several weeks. Sunspots are magnetic regions on the Sun with magnetic field strengths thousands of times 
strongerhan the Earth's magnetic field. Sunspots usually come in groups with two sets of spots. One set will have positive or 
north magnetic field while the other set will have negative or south magnetic field. Although sunspots themselves produce 
only minor effects on solar emissions, the magnetic activity that accompanies the sunspots can produce dramatic changes in 
the ultraviolet and soft x-ray emission levels. These changes over the solar cycle have important consequences for the Earth's 
upper atmosphere.  

The sunspot number is calculated by first counting the number of sunspot groups and then the number of 

individual sunspots. The "sunspot number" is then given by the sum of the number of individual sunspots and ten times the 
number of groups. Since most sunspot groups have, on average, about ten spots, this formula for counting sunspots gives 
reliable numbers even when the observing conditions are less than ideal and small spots are hard to see. The given time 
series contains the sunspot number measured from year 1818 to 2011.The system is subjected to noise reduction. The raw 
and noise reduced time series are shown in Fig2 and Fig3    
  

        
                   Fig.3.Noisy time series of Sunspot Number                     Fig.4.Noise reduced time series of Sunspot Number. 

 
In our system the recurrent neural networks are trained with a single channel time series data of the sunspot. All 

the three sets of weights w1 … are updated using the EKF equations. The initial values of P(0/-1) and x(0) are obtained using 
the equations(14) to (17) executed  forwards and backwards , over 10000  data samples  on the time series. The training is 
continued until the modelling error comes to an appreciable level of 0.00254x10-5 as shown in Fig.4 
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Fig.5.MSE versus data samples(„Sunspot time series‟) 

 B. State space analysis 
The dynamics of the states of the systems are evaluated using recurrent network. The state space analysis is done 

and change in dynamics of the system is described in the different time intervals. The two states of the system are exactly 
reproduced by the NNEKF model. The state space evolution shows that the system modelled from the sunspot time series 
using the method reported here is very much similar to the famous chaotic system developed by Otto Rossler.(Fig 6 to 

fig13). The  Rossler system is  described by the following nonlinear equations. 
 

 
 
The state space evolution of Rossler system generated from the above dynamical system  is  also given below for 

comparison. It can be seen that Fig. 6 and 7, 8 and 9, 10 and 11 and 12 and 13, taken pair wise, underscores the similarity 
between the systems . As suggested by Min Han [15] we could prove that the sunspot time series shows exact similarity to 
Rossler system .Further, the minimum embedding dimension  calculated as three from the method of false nearest 
neighbours  is also validated from the state space evolution. 

              
Fig.6.Phase plot (states1 and 2) („Sunspot time series‟)                       Fig.7.Phase plot (states1 and 2) („Rossler system‟) 

 
      Fig.8.Phase plot (states2 and 3) („Sunspot time series‟)                          Fig.9.Phase plot (states2 and 3) („Rossler system‟) 
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     Fig.10.Phase plot (states1 and 3) („Sunspot time series‟)             Fig.11.Phase plot (states1 and 3) („Rossler system‟) 
 

      
 

     Fig.12.Phase plot (states1,2 and 3) („Sunspot time series‟)            Fig.13.Phase plot (states1, 2 and 3) („Rossler system‟)    
 

The Lyapunov Exponents of the Sunspot time series is calculated using the method described in section IV and is 
given in table 1. 
                                                                          Table.1.Lyapunov exponents 

-5.2446 0 0.0694 

 
It can be seen that one of Lyapunov exponent is negative, one is   zero and the other one is positive verifying the 

chaotic behaviour.  
 

VII. CONCLUSION 
It is demonstrated that the recurrent networks trained with EKF-EM algorithm can be efficiently used to identify 

chaotic systems, from the time series. The results are demonstrated on the Sunspot time series from a noisy measurement. 
The number of states required for modelling is evaluated using the method of   minimum embedding dimension and 
thereafter, the given time series is modelled with an embedding dimension of three. The proposed method has high ability of 
extracting the structure of the original chaotic systems.   The system states xk and the set of model parameters w for the 

dynamic system are simultaneously estimated from only the observed time series yk . The results are shown to have an 
excellent matching with the state space evolution generated from the mathematical equations describing the Rossler system. 

The positive Lyapunov exponents show the hidden chaotic nature of the time series. The proposed method gives very low 
modelling error and considerably low computational time. This method can be further extended for the prediction of highly 
nonlinear and chaotic systems. 
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