
International Journal of Engineering Research and Development

e-ISSN: 2278-067X, p-ISSN: 2278-800X, www.ijerd.com

Volume 2, Issue 10 (August 2012), PP. 23-27

23

Comparative Study of Different Honeypots System

Ashish Girdhar
1
, Sanmeet Kaur

2

1Student (M.Tech), Patiala Thapar University,
2Assistant Professor, SMCA Patiala, Thapar University,

Abstract––A honeypot is a closely monitored network decoy serving several purposes: it can distract adversaries from

more valuable machines on a network, provide early warning about new attack and exploitation trends and allow in-

depth examination of adversaries during and after exploitation of a honeypot. The concept of honeypots was first

proposed in Clifford Stoll's book “The Cuckoo's Egg", and Bill Cheswick's paper “An Evening with Berferd”. Honeypots

as an easy target for the attackers can simulate many vulnerable hosts in the network and provide us with valuable

information of the attackers. Honeypots are not the solution to the network security but they are tools which are

implemented for discovering unwanted activities on a network. They are not intrusion detectors, but they teach us how to

improve our network security or more importantly, teach us what to look for. Honeypot is a system which is built and set

up in order to be hacked. Except for this, honeypot is also a trap system for the attackers which is deployed to counteract

the resources of the attacker and slow him down, thus he wastes his time on the honeypot instead of attacking the

production systems. This paper discusses honeypots basics, types of honeypots, various honeypots, advantages and

disadvantages of honeypots and the last section presents the comparison between different honeypots systems.

Keywords––Honeypots, Honeyd, Specter, Network Security, Honeynet.

I. INTRODUCTION TO HONEYPOTS
In general the term „honeypot‟ is usually being used for representing “a container (or pot) of honey”. But in the

case of computer security, this term is being used to represent a computer security concept that is solely based on deception

[2]. Honeypot is a resource to trap the attacker‟s tools and activities. Lance Spitzner, the founder of The Honeynet Project

organization, defines a honeypots as: “Honeypot is a security resource whose value lies in being probed, attacked or

compromised” [3].

This definition tells the nature of honeypot. It means that if no one attacks honeypot, it is nothing. But honeypot is

a valuable security tool if it is being attacked by the attacker. Other security tools such as firewall and IDS are completely

passive for that their task is to prevent or detect attacks. Honeypot actively give a way to attacker to gain information about

new intrusions. This nature makes honeypot outstanding to aid other security tools. Honeypot differ according to different

use. It could be an emulated application, a fully functional operating system with default configuration or an actual net

including different OS and applications, even an emulated network on a single machine.

Honeypots are very different, and it is this difference that makes them such a powerful tool. Honeypots do not

solve a specific problem. Instead, they are a highly flexible tool that has many applications to security. They can be used to

slow down or stop automated attacks, capture new exploits to gather intelligence on emerging threats or to give early

warning and prediction. They come in many different shapes and sizes. They can be either a Windows program that

emulates common services, such as the Windows honeypot KFSensor3 or entire networks of real computers to be attacked,

such as Honeynets.

II. TYPES OF HONEYPOTS
In general honeypots can be divided in to two categories:

 Production honeypots

 Research honeypots[4]

2.1 Production Honeypots
Production honeypots are used to assist an organization in protecting its internal IT infrastructure. They are

valuable to the organization especially commercial, as they help to reduce the risk that a specific organization faces. They

secure the organization by policing its IT environment to identify attacks. These honeypots are useful in catching hackers

with criminal intentions. The implementation and deployment of these honeypots are relatively easier than research

honeypots .One of the reasons is that they have less purpose and require fewer functions. As a result, they also provide less

evidence about hacker‟s attack patterns and motives.

2.2 Research Honeypots

Research honeypots are complex. They are designed to collect as much information as possible about the hackers

and their activities. They are not specifically valuable to an organization. Their primary mission is to research the threats

organization may face, such as who the attackers are, how they are organized, what kind of tools they use to attack other

systems, and where they obtained those tools. While production honeypots are like the police, research honeypots act as their

Comparative Study of Different Honeypots System

24

intelligence counterpart and their mission is to collect information about the attacker. The information gathered by research

honeypots will help the organization to better understand the hackers attack patterns, motives and how they function. They

are also an excellent tool to capture automated attacks such as worms.

III. CLASSIFICATION OF HONEYPOTS
According to the level of involvement between the attacker and the honeypots, the honeypots can be divided into three

categories:

 Low-interaction honeypots

 Medium-interaction honeypots

 High-interaction honeypots.

3.1 Low-Interaction Honeypots
Low-interaction honeypots are the easiest to install, configure, deploy, and maintain because of their simple design

and basic functionality. Normally these technologies merely emulate a variety of services. The attacker is limited to

interacting with these pre designated services. For example, a low-interaction honeypot could emulate a standard Unix server

with several running services, such as Telnet and FTP. An attacker could Telnet to the honeypot, get a banner that states the

operating system, and perhaps obtain a login prompt. The attacker can then attempt to login by brute force or by guessing the

passwords. The honeypot would capture and collect these attempts, but there is no real operating system for the attacker to

log on to. The attacker's interaction is limited to login attempts.

Since low-interaction honeypots are simple, they have the lowest level of risk. There is little functionality offered,

there is less to go wrong. There is also no operating system for the attacker to interact with, so the honeypot cannot be used

to attack or monitor other systems. Low-interaction honeypots are easy to deploy and maintain because they have limited

interaction capabilities, which also reduces risk [5].

3.2 Medium-interaction Honeypots

In terms of interaction, medium-interaction honeypots are more advanced than low-interaction honeypots, but less

advanced than high interaction honeypots. Medium-Interaction honeypots also do not have a real operating system, but the

services provided are more sophisticated technically. Here the levels of honeypots get complicated so the risk also increases

especially with regards to vulnerability.

3.3 High-interaction Honeypots

High-interaction honeypots are different; they are a complex solution and involve the deployment of real operating

systems and applications. They capture the extensive amounts of information and allowing attackers to interact with real

systems where the full extent of their behavior can be studied and recorded. Examples of high-interaction honeypots include

Honeynets and Sebek. These kinds of honeypots are really time consuming to design, manage and maintain. Among the

three types of honeypots, these honeypots possess a huge risk. But, the information and evidence gathered for analysis is

very large. With these types of honeypots we can learn what are the kind of tools hackers use, what kind of exploits they

use, what kind of vulnerabilities they normally look for, their knowledge in hacking and surfing their way through operating

systems and how or what the hackers interact about[5].

IV. TRADEOFFS BETWEEN HONEYPOT LEVELS OF INTERACTION
Table 1 summarizes the tradeoffs between different levels of interaction in four categories. The first category is

installation and configuration effort, which defines the time and effort in installing and configuring the honeypot. In general,

if the level of interaction between the user and the honeypot is more then the effort required to install and configure the

honeypot is also significant.

The second category is deployment and maintenance. This category defines the time and effort involved in

deploying and maintaining the honeypot. Once again, the more functionality provided by the honeypot, the more is the effort

required to deploy and maintain the honeypot.

The third category is information gathering which means how much information can the honeypot gain on

attackers and their activities? High-interaction honeypots can gather vast amounts of information, whereas low-interaction

honeypots are highly limited.

Finally, level of interaction impacts the amount of risk introduced. The greater the level of interaction, the more

functionality provided to the attacker and the greater the complexity. Combined, these elements can introduce a great deal of

risk. On the other hand, low-interaction honeypots are very simple and offer a little interaction to attackers and thus a very

little risk is associated with them.

Table 1: Tradeoffs between Honeypot Levels of Interaction [1]

Degree of involvement Low Medium High

Installation and configuration effort

Easy Medium Difficult

Deployment and maintenance effort

Easy Medium Difficult

Information Gathering

Limited Medium Extensive

Level of Risk Low Medium High

Comparative Study of Different Honeypots System

25

V. HONEYPOTS SYSTEMS

Five honeypots are discussed in the following section.

 ManTrap

 Back officer friendly

 Specter

 Honeyd

 Honeynet

5.1 ManTrap
ManTrap is a high-interaction commercial honeypot created, maintained, and sold by Recourse Technologies.

ManTrap creates a highly controlled operating environment that an attacker can interact with. It creates a fully functional

operating system containing virtual cages rather than a limited operating system. The cages are logically controlled

environments from which the attacker is unable to exit and attack the host system. However, instead of creating an empty

cage and filling it with certain functionality ManTrap creates cages that are mirror copies of the master operating system.

Each cage is a fully functional operating system that has the same capabilities as a production installation.

This approach creates a very powerful and flexible solution. Each cage is its own virtual world with few

limitations. An administrator can customize each cage as he would a physically separate system. He can create users, install

applications, run processes, and even compile his own binaries. When an intruder attacks and gains access to a cage, to the

attacker it looks as if the cage is a truly separate physical system. He is not aware that he is in a caged environment where

every action and keystroke is recorded [6].

5.2 BackOfficer Friendly (BOF)

BackOfficer Friendly, or BOF as it is commonly called, is a simple, free honeypot solution developed by Marcus

Ranum. It is extremely simple to install, easy to configure, and low maintenance. However, this simplicity comes at a cost.

Its capabilities are severely limited. It has a small set of services that simply listen on ports, with notably limited emulation

capabilities.

It works by creating port listeners, or open sockets, that bind to a port and detect any connections made to these

ports. When a connection is made to the port, the port listeners establish a full TCP connection (if the service is TCP), log

the attempt, generate an alert, and then close the connection, depending on how the service is configured. Everything BOF

does happen in user space. It does not build or customize any packets when responding to connections. Because of this

simple model, BOF can run on any Windows platform, including Windows 95 and Windows 98[1].

5.3 Specter

Specter is a commercially supported honeypot developed and sold by the folks at NetSec. Like

BOF, Specter is a low-interaction honeypot. However, Specter has far greater functionality and capabilities than

BOF. Not only can Specter emulate more services, it can emulate different operating systems and vulnerabilities. It also has

extensive alerting and logging capabilities. Because Specter only emulates services with limited interaction, it is easy to

deploy, simple to maintain, and is low risk. However, compared to medium- and high-interaction honeypots, it is limited in

the amount of information it can gather. Specter is primarily a production honeypot. Specter shares the same limitations as

BOF. Specifically, it cannot listen on or monitor a port that is already owned by another application. If any service listening

on the FTP port (port 21), then Specter is unable to monitor on that port. Specter can only monitor ports that are not owned

by any other applications. It also has the capability of emulating different operating systems. This is done by changing the

behavior of the services to mimic the selected operating system [6].

5.4 Honeyd

Honeyd is developed and maintained by Niels Provos of the University of Michigan and was first released in April

2002. It is designed as a low-interaction solution; there is no operating system intended for an attacker to gain access to, only

emulated services. Honeyd is designed primarily as a production honeypot, used to detect attacks or unauthorized activity

[1].

Honeyd works on the principle that when it receives a probe or a connection for a system that does not exist, it

assumes that the connection attempt is hostile, most likely a probe, scan, or attack. When Honeyd receives such traffic, it

assumes the IP address of the intended destination (making it the victim). It then starts an emulated service for the port that

the connection is attempting. Once the emulated service is started, it interacts with the attacker and captures all of his

activity. When the attacker is done, the emulated service exits and is no longer running. Honeyd then continues to wait for

any more traffic or connection attempts to systems that do not exist. Honeyd assumes an IP address and runs an emulated

service only when it receives a connection attempted for a system that does not exist, an extremely efficient method. As

Honeyd receives more attacks, it repeats the process of assuming the IP address of the intended victim, starting the

respective emulated service under attack, interacting with the attacker, and capturing the attack, and finally exiting. It can

emulate multiple IP addresses and interact with different attackers all at the same time.

5.5 Honeynets

Honeynets represent the extreme of high-interaction honeypots. Not only does it provide the attacker with a

complete operating system to attack and interact with, it may also provide multiple honeypots. Honeynets are nothing more

than a variety of standard systems deployed within a highly controlled network. By their nature, these systems become

Comparative Study of Different Honeypots System

26

honeypots, since their value is in being probed, attacked, or compromised. The controlled network captures all the activity

that happens within the Honeynet and decreases the risk by containing the attacker's activity.

Honeynets are a simple mechanism that works on the same principle as a honeypot. You create a resource that has

little or no production traffic. Anything sent to the Honeynet is suspect, potentially a probe, scan, or even an attack.

Anything sent from a Honeynet implies that it has been compromised— an attacker or tool is launching activity. However,

Honeynets take the concept of honeypots one step further: Instead of a single system, a Honeynet is a physical network of

multiple systems.

Honeynets are not a product you install or an appliance you drop on your network. Instead, Honeynets are an

architecture that builds a highly controlled network, within which you can place any system or application you want [7].

Table 2: Advantages and disadvantages of various honeypots [1]

Name of Honeypot Advantages Disadvantages

ManTrap Provides response mechanism based

on frequency analysis and shuts down

machines by monitoring increased

hacker activity.

Provides stealth monitoring and thus

live attack analysis.

Detects both host and network based

intrusions

Need highly skilled expertise to

maintain and deploy these kinds of

honeypots.

 Even with that, the risk involved for

getting compromised remains and if

these are connected to the production

servers a thorough risk analysis has to

be done.

BOF Easy to install, configure and

maintain.

Runs on any windows or Unix based

platform.

Little risk due to simplicity.

Limited to seven ports on which it can

detect attacks.

Ports cannot be customized, increasing

the possibility of fingerprinting.

No remote logging, alerting or

configuring personality.

Specter Easy to install, configure and deploy.

Extensive service emulation.

Monitors twice as many ports as BOF.

Outstanding notification capabilities.

Monitors only 14 ports.

Preprogrammed emulated services are

limited to interacting with known

behavior.

Limitations on information collected,

mainly to transactional information

and the attacker's interaction with the

seven emulated services.

Honeyd Can monitor any TCP or UDP port

and entire networks.

As an open source solution, it is free

and will develop quickly with the

input and development of others in

security community.

Resist fingerprinting efforts by

emulating operating system at IP stack

level.

As a low interaction solution, it cannot

provide real operating system for

attackers to interact with.

As an open source solution, it provides

no formal support for maintenance and

troubleshooting.

No built in mechanism for alerting

Honeynets Flexibility-any system can be placed

in Honeynet environment.

Extensive data capture capabilities for

both known and unknown tools and

tactics.

Adaptable to many organizations and

environments.

Complexity of deployment and

resources required to maintain.

High interaction functionality,

introduces the risk of attackers using

the systems to attack, harm other

system.

New and immature technologies have

a greater risk of breaking and

introducing errors.

VI. COMPARISON OF VARIOUS HONEYPOTS:
In this section five honeypots are compared in the tabular form.

Comparative Study of Different Honeypots System

27

 The interaction level between the user and the honeypot is high in case of Mantrap, specter and Honeynet and this

level is low in case of BOF and honeyd.

 Honeyd and Honeynet are freely available whereas Mantrap, specter and BOF are not freely available.

 Honeyd and Honeynet are open source whereas Mantrap, specter and BOF are not open source.

 BOF does not support Log file whereas rest of the honeypots support log file.

 BOF does not emulate the operating system whereas rest of the four honeypots can emulate operating system.

 Unlimited services are supported by the ManTrap, Honeyd and Honeynet whereas limited services are supported

by the BOF and specter.

Table 3: Comparison of various honeypots

 ManTrap BOF Specter Honeyd Honeynet

Interaction

Level

High Low High Low High

Freely

Available

No No No Yes Yes

Open Source No No No Yes Yes

Log file

Support

Yes No Yes Yes Yes

OS

Emulation

Yes No Yes Yes Yes

Supported

Services

Unrestricted 7 13 Unrestricted Unrestricted

VII. CONCLUSION
Honeypots are the security resources that can help in achieving network security. Different honeypots systems

have been discussed in the paper. An effort has also been made to compare the different systems. Each honeypot has its

advantages and disadvantages. Different honeypot system can be deployed under different conditions. An administrator can

choose any of the five honeypots discussed in the paper according to his requirements.

REFERENCES
[1]. Spitzner, L.: Tracking Hackers. Addison Wesley, September 2002.
[2]. Zanoramy, W., Zakaria, A., et.al,”Deploying Virtual Honeypots on Virtual Machine Monitor”.

[3]. Spitzner, L. Honeypot: Definitions and Values. May, 2002.
 http://www.spitzner.net.

[4]. Levin, J., Labella, R. Henry,: “The Use of Honeynets to Detect Exploited Systems Across Large Enterprise Networks”, IEEE

Proceedings, June 2003.
[5]. Qassrawi, M., Hongli, Z. “Deception methodology in virtual Honeypots”, Second International Conference on Network Security,

Wireless Communication and Trusted Computing, 2010.

[6]. Bao, J., Gao, M. “Research on network security of defense based on Honeypot”, International Conference on Computer
Applications and System Modelling, 2010.

[7]. Levine, J., Grizzard, J. “Using honeynets to protect large enterprise networks,” Security & Privacy Magazine, IEEE, vol. 2, pp.

73-75, 2004
[8]. Kuwatly, I., Sraj, M. A Dynamic Honeypot Design for Intrusion Detection .

http://webfealb.fea.aub.edu.lb/proceedings/2004/SRC-ECE-04.pdf.

[9]. Provos, N. A Virtual Honeypot Framework,2004
http://www.citi.umich.edu/u/ Provos/papers/honeyd.pdf.

[10]. Lanoy, A., and Romney, G.W.: “A Virtual Honey Net as a Teaching Resource”, Information Technology Based Higher

Education and Training, 2006. ITHET'06. 7th International Conference on, 2006, pp. 666-669

http://www.spitzner.net/
http://webfealb.fea.aub.edu.lb/proceedings/2004/SRC-ECE-04.pdf
http://www.citi.umich.edu/u/

