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Abstract–– A Roll Position demand (as well as Roll Position Control) missile autopilot design methodology for a class of 

guided missile, based on state feedback, Ackermann pole-placement and reduced order Das & Ghosal observer (DGO), is 

proposed. The open loop unstable model of the roll control (or roll position demand) autopilot has been stabilized by 

using pole placement and state feedback. The non-minimum phase feature of rear controlled missile airframes is 

analyzed. Actuator dynamics has also been included in this design to make the overall system practically suitable for use. 

The overall responses of the Roll Control autopilot has been significantly improved over the frequency domain design 

approach where phase lag & phase lead compensator were used. Closed loop system poles are selected on the basis of 

desired time domain performance specifications. This set of roots not only to ensure the system damping, but also to make 

sure that the system can be fast. Reduced order Das & Ghosal (DGO) observer is implemented successfully in this design 

to estimate the Aileron angle and its rate. Finally a numerical example is considered and the simulated results are 

discussed in details. The date set has been chosen here for which largest rolling moment would occur (at Mach No = 4) 

due to unequal incidence in pitch and yaw. 

 

Keywords–– Roll Position & Roll Rate Control Autopilot, Ailerons-Rollerons, Roll Gyro, Fin Servo Actuator, 

Aerodynamic control, Luenberger Observer, Das & Ghosal Observer, Generalized Matrix Inverse and Ackermann. 

 

I. INTRODUCTION 
The fundamental objective of autopilot design for missile systems is to provide stability with satisfactory 

performance and robustness over the whole range of flight conditions throughout the entire flight envelope that missiles are 

required to operate in, during all probable engagements. Roll autopilot is used to eliminate roll Angle error caused by 

disturbances, and maintain stable relationship of the body coordinate system and other relative coordinates, and avoid chaos 

of pitch and yaw signal.. 

Wang Lei, Meng Xiu-yun, Xia Qun-li and Guo-Tao [1] have proposed a Roll autopilot designing method with Pole 

placement Method and State-Observer Feedback. State feedback gain via pole placement is designed by selecting a suitable 

root of closed-loop transfer function. With pole-placement method full-order state observer with one or two measurable 

outputs are designed respectively. In this literature, taking the integral initial values disturbance of roll angle as an example 

the authors have illustrated that in order to stabilize the missile’s roll angle position, not only roll angle error should be 

eliminated, but also the transition process of good quality is required. The quality of control system mainly depends on the 

distributive position of the system poles in the root plane. Pole-placement is to select state-feedback gain, and make the 

system poles located in expected position in root plane, so as to achieve an appropriate damping coefficient and undamped 

natural frequency. Only when the state parameters for feedback are observable, the pole placement method can be used. 

When the state parameters used for feedback are not observable or requirement of a certain filter properties, a state observer 

should be designed. They focused on the application of the pole placement used to design autopilot feedback gain and to 

design the state observer. In the design of the feedback gain, the focus is to select a set of good performance roots on the root 

locus. This set of roots not only to ensure the system damping, but also to make sure that the system can be fast. Through the 

state observer’s responses it can be seen that, when all the intermediate variables of the system are immeasurable, the 

observer can be designed with only one measurable output 𝛾 (Roll angle). Although the observer is the estimated means 

taken only when the intermediate state cannot be measured, we still can construct the intermediate state of the original 

system. It is concluded to the available rule: When 𝛾 and 𝛾  of the system can be measured, the system outputs of the 

observer with two measurable outputs can be much more accurate than that with one measurable output. 

In literature [2] & [3], detailed design of classical two loop flight path rate demand autopilot is given. Here the 

accelerometer provides the main output (flight path rate) feedback and the rate gyro enables the body rate feedback (inner 

loop) thus resulting in two loops. The authors presented three different design situations of two loop lateral autopilot for a 

class of guided missile. Frequency domain approach had been taken in those papers. In conventional two loop autopilot 

system there is no provision for direct control over the missile body rate. However, Tactical homing missiles require explicit 

control on body rate. Three such specific requirements are a) body rate generation not to exceed predetermined maximum; b) 

body acceleration limit; and c) it could produce moderate actuator rates without rate saturation for sudden pitch rate 

demands. In literature [4], authors modified the design of two loop lateral autopilot and proposed an additional rate gyro 

feedback to be applied at the input of an integrating amplifier block which integrates the body rate (i.e. pitch rate here) error 

to obtain direct control over the missile body rate. This enhanced model is referred to as Three Loop Lateral Autopilot. The 

three loop autopilot has a larger dc gain and a relatively small high frequency gain compared to a two-loop autopilot. This 

feature effectively improves the steady state performance and loop stiffness as well as reduces the initial negative peak of the 
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time response. The three-loop autopilot attempts to reduce the adverse effect of non-minimum phase zeros. In reference [5], 

Prof. G. Das and T. K. Ghosal have derived a new method of reduced order observer construction based on Generalized 

Matrix Inverse theory [16] which possesses some certain advantages over the well known and well-established Luenberger 

observer [12] & [13]. In paper [6] & [7], the present authors discussed about the intricate details of Luenberger observer and 

Das & Ghosal (DGO) observer. They have also carried out an exhaustive comparison (structure-wise and performance-wise) 

between the two observers. In literature [11], Lin Defu, Fan Junfang, Qi Zaikang and Mou Yu have proposed a modification 

of classical three-loop lateral autopilot design using frequency domain approach. Also they have done performance and 

robustness comparisons between the two-loop and classical three-loop topologies. 

The unique contribution of this paper is the modified design technique of Roll Position Demand (as well as Roll 

Position Control) autopilot in state space domain by reduced order Das & Ghosal observer based Ackermann state feedback. 

Full state feedback has been used to make the system stability better and to regulate all the states. Actuator dynamics which 

is neglected in [1] has also been taken in to account in this design. A very fast servo actuator is considered here so that the 

demanded roll position can be achieved quickly or it can be made zero in case of Roll Position Control autopilot. The system 

is designed in a very effective manner such that there is no steady state error in the output thus it can follow the commanded 

input exactly. More over the overshoots occurring in the Roll position response in case of frequency domain [14] design 

approach has been fully eliminated along with the maximum Roll rate has also come down significantly. It has been 

established through this paper that the aileron deflections and their rates are also reduced to a great extent which poses major 

issues of concern regarding structural failure of missiles. 

 

II. STATE OBSERVER 
To implement state feedback control [control law is given by 𝒖 = 𝒓 − 𝑲𝒙 ……(𝟐. 𝟏)] by pole placement, all the 

state variables are required to be feedback. However, in many practical situations, all the states are not accessible for direct 

measurement and control purposes; only inputs and outputs can be used to drive a device whose outputs will estimate the 

state vector. This device (or computer program) is called State Observer. Intuitively the observer should have the similar 

state equations as the original system (i.e. plant) and design criterion should be to minimize the difference between the 

system output 𝒚 = 𝑪𝒙 and the output 𝒚 = 𝑪𝒙  as constructed by the observed state vector 𝒙 . This is equivalent to 

minimization of 𝒙 − 𝒙 . Since 𝒙 is inaccessible, 𝒚 − 𝒚  is tried to be minimized. The difference  𝒚 − 𝒚    is multiplied by a 

gain matrix (denoted by M) of proper dimension and feedback to the input of the observer. There are two well-known 

observers namely – Luenberger Observer [12] & [13] and Das & Ghosal Observer [5] while the second one has some 

genuine advantages over the first one. Das & Ghosal Observer construction procedure is essentially based on the Generalized 

Matrix Inverse Theory and Linear space mathematics. 

 
Fig - 2.1: General Block Diagram of an Observer based State Feedback Control System 

 

III. DEVELOPMENT OF MODIFIED ROLL POSITION DEMAND AUTOPILOT FROM 

THE CONVENTIONAL ONE 
The following block diagram (fig. 3.1) represents the transfer function model of a Roll Position Control Autopilot. 

The model has been taken from Garnell & East [14]. 

The transfer function model shown in fig. 3.1 has been converted into state variable form. Das & Ghosal observer 

is applied to estimate the Aileron angle and its rate where as the Roll angle and the Roll rate are measured externally 

Position gyro and Roll gyro, respectively. Full state feedback is used instead of partial state feedback (as in case of transfer 

function model) to ensure effective pole-placement such that desired time domain performance can be achieved. 
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Fig - 3.1: Conventional Roll Position Control (or Roll Position Demand) Autopilot 

 

 
Fig – 3.2: State Feedback Design of Roll Control Autopilot using Das & Ghosal Observer (DGO) 

 

Notations & Symbols used:  

𝝓 𝑖𝑠 𝑅𝑜𝑙𝑙 𝐴𝑛𝑔𝑙𝑒; 𝒑 𝑖𝑠 𝑅𝑜𝑙𝑙 𝑟𝑎𝑡𝑒; 𝑳𝝃 𝑖𝑠 𝑅𝑜𝑙𝑙 𝑀𝑜𝑚𝑒𝑛𝑡; 

𝑳𝒑 𝑖𝑠 𝐷𝑎𝑚𝑝𝑖𝑛𝑔 𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑖𝑛 𝑅𝑜𝑙𝑙 ;   

𝝃 𝑖𝑠 𝐴𝑖𝑙𝑒𝑟𝑜𝑛 𝑑𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑛𝑔𝑙𝑒;  𝝃  𝑅𝑎𝑡𝑒 𝑜𝑓 𝐴𝑖𝑙𝑒𝑟𝑜𝑛  
𝐷𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛; 𝑻𝒂𝑖𝑠 𝐴𝑖𝑟𝑓𝑟𝑎𝑚𝑒 𝑇𝑖𝑚𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡; 
  𝒘𝒏𝒔 𝑖𝑠 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓𝐴𝑐𝑡𝑢𝑎𝑡𝑜𝑟; 
𝜻𝒂 𝑖𝑠 𝑑𝑎𝑚𝑝𝑖𝑛𝑔 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑎𝑐𝑡𝑢𝑎𝑡𝑜𝑟; 𝑲𝒔 𝑖𝑠 𝑡𝑕𝑒 𝑆𝑒𝑟𝑣𝑜 𝑔𝑎𝑖𝑛; 
𝑲𝒈𝑖𝑠 𝑅𝑎𝑡𝑒 𝐺𝑦𝑟𝑜 𝑔𝑎𝑖𝑛; 

𝝓𝒅𝐷𝑒𝑚𝑎𝑛𝑑𝑒𝑑 𝑅𝑜𝑙𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛; 𝑴 𝑖𝑠 𝑀𝑎𝑐𝑕 𝑁𝑢𝑚𝑏𝑒𝑟; 
𝑨 𝑖𝑠 𝑅𝑜𝑙𝑙 𝑀𝑜𝑚𝑒𝑛𝑡 𝑜𝑓 𝐼𝑛𝑒𝑟𝑡𝑖𝑎; 
  

 

IV. STATE VARIABLE MODELING OF ROLL POSITION DEMAND AUTOPILOT 
The open loop model of Roll Position Autopilot is shown in fig. 4.1 

 

 
Fig – 4.1: Open Loop Model of Roll Position Control Autopilot 

 

The above open loop model can be converted to state variable form based on the following four state variables: 

𝒙𝟏 = 𝝓 (𝑹𝒐𝒍𝒍 𝑨𝒏𝒈𝒍𝒆)  
𝒙𝟐 = 𝒑 (𝑹𝒐𝒍𝒍 𝑹𝒂𝒕𝒆) 

𝒙𝟑 =  𝝃 (𝑨𝒊𝒍𝒆𝒓𝒐𝒏 𝑫𝒆𝒇𝒍𝒆𝒄𝒕𝒊𝒐𝒏) 

𝒙𝟒 = 𝝃  (𝑹𝒂𝒕𝒆 𝒐𝒇 𝑨𝒊𝒍𝒆𝒓𝒐𝒏 𝑫𝒆𝒇𝒍𝒆𝒄𝒕𝒊𝒐𝒏) 

 

Out of these four state variables, 𝒙𝟏 𝒂𝒏𝒅 𝒙𝟐 have been considered to be as outputs. Thus Roll Control Autopilot model is a 

SIMO (single input – multiple outputs) system. The state equations obtained are as follows: 
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𝑥 1 = 𝑥2 …… 4.1  
 

𝑥 2 = −
1

𝑇𝑎
𝑥2 −

𝐿𝜉

𝑇𝑎𝐿𝑝
𝑥3 …… (4.2) 

 

𝑥 3 = 𝑥4 …… (4.3) 

 

𝑥 4 = −2𝜁𝑎𝑤𝑛𝑠𝑥4 − 𝑤𝑛𝑠
2 𝑥3 − 𝐾𝑠𝑤𝑛𝑠

2 𝑢 …… (4.4) 

 

So the A, B, C matrices take the forms as: 

 

A =

 
 
 
 
 
0 1 0 0

0 −
1

Ta

−
𝐿𝜉

𝑇𝑎𝐿𝑝
1

0
0

0
0

0
−𝑤𝑎

2
1

−2ζ
a

wa 
 
 
 
 

; B =  

0
0
0

−𝐾𝑠𝑤𝑎
2

  ; 

 

and C =  
1 0 0 0
0 1 0 0

 …… (4.5)  

 

The combined system (fig. 3.2) is governed by the following equations: 

 

𝑥 = 𝐴𝑥 + 𝐵𝑢;    𝑦 = 𝐶𝑥…… (4.6) 

 

𝑢 = 𝑟 − 𝐾𝑥 ……(4.7) 

  

 

V. REDUCED ORDER DAS & GHOSAL OBSERVER (DGO) – GOVERNING 

EQUATIONS 
Reduced order Das and Ghosal observer [5] is governed by the following equations and conditions. 

 

𝑥 =  𝐶𝑔𝑦 +  𝐿 𝑕……… (5.1 )  (eqn. 13 of [5]) 

 

𝑕(𝑡) = 𝐿𝑔𝐴𝐿 𝑕 𝑡 + 𝐿𝑔𝐴𝐶𝑔  𝑦 𝑡 + 𝐿𝑔  𝐵 𝑢 𝑡 ……… (5.2) (eqn. 15 of [5]) 

 

𝑦 =  𝐶𝐴𝐿𝑕 + 𝐶𝐴𝐶𝑔  𝑦 + 𝐶𝐵 𝑢 …… (5.3)  (eqn. 18 of [5]) 

 

𝑕  =  𝐿𝑔𝐴𝐿 − 𝑀𝐶𝐴𝐿 𝑕 +  𝐿𝑔𝐴𝐶𝑔 − 𝑀𝐶𝐴𝐶𝑔 𝑦 +  𝐿𝑔 − 𝑀𝐶𝐵 𝑢 + 𝑀𝑦 …… (5.4)  (eqn. 19 of [5]) 

 

𝑞  =  𝐿𝑔𝐴𝐿 − 𝑀𝐶𝐴𝐿 𝑞 +   𝐿𝑔𝐴𝐶𝑔 − 𝑀𝐶𝐴𝐶𝑔 +  𝐿𝑔𝐴𝐿 − 𝑀𝐶𝐴𝐿 𝑀 𝑦 +  𝐿𝑔 − 𝑀𝐶𝐵 𝑢…… (5.5)  (eqn. 20 of [5]) 

 

𝑤𝑕𝑒𝑟𝑒 𝑞 = 𝑕 − 𝑀𝑦…… (5.6)  (Page-374 of [5]) 

 

Equation (5.5) can be expressed in short form: 𝑞  = 𝐴 𝑞 + 𝐽 𝑦 + 𝐵 𝑢…… (5.7) 

 

𝐴𝑛𝑑  𝑥 = 𝐿𝑞 + (𝐶𝑔 + 𝐿𝑀)𝑦…… 5.8   (eqn. 21 of [5]) 

Equation (5.8) can also be expressed in short form: 𝑥 = 𝐶 𝑞 + 𝐷 𝑦…… (5.9) 

 

Then equation (4.6) can be rewritten by using eqns. (4.7) & (5.9) as: 

 

𝑥 =  𝐴 − 𝐵𝐾𝐷 𝐶  𝑥 +  𝐵𝑟 − 𝐵𝐾𝐶 𝑞 …… (5.10) 

 

Equation (5.7) can be rewritten by using eqns. (4.7) & (5.9) as: 

 

𝑞  =  𝐽 − 𝐵 𝐾𝐷  . 𝐶𝑥 +  𝐵 𝑟 +  𝐴 − 𝐵 𝐾𝐶  𝑞 …… (5.11) 

 

Combining eqns. (5.10) and (5.11) into a matrix, we get 

 

 
𝒙 

𝒒  
 =  

 𝑨 − 𝑩𝑲𝑫 𝑪 −𝑩𝑲𝑪 

 𝑱 − 𝑩 𝑲𝑫  𝑪  𝑨 − 𝑩 𝑲𝑪  
  

𝒙
𝒒  +  

𝑩
𝑩 
  𝒓 ……  𝟓. 𝟏𝟐 𝒂 𝑎𝑛𝑑  

 

𝒀 =  𝟏 𝟎 𝟎 𝟎 𝟎 𝟎  
𝒙
𝒒  …… (𝟓. 𝟏𝟐𝒃) 
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𝒂𝒏𝒅 𝒙 = 𝑪 𝒒 + 𝑫 𝒚 = 𝑪 𝒒 + 𝑫 𝑪𝒙…… 𝟓. 𝟏𝟐 𝒄 . 
 

VI. SIMULATION RESULTS 
The following numerical data for a class of guided missile have been taken for Matlab simulation:  

 

𝑇𝑎 = 0.0257 𝑠𝑒𝑐; 𝐿𝜉 = −13500; 𝐿𝑝 = −37.3 

𝐾𝑠 = −1.48; 𝐾𝑔 = 1; 𝑤𝑛𝑠 = 180
𝑟𝑎𝑑

𝑠𝑒𝑐
; 𝜁𝑎 = 0.6;  

𝑀 = 2.8; 𝐴 = 0.96; 
 

  

Using these values, the open loop state space model of three-loop autopilot [given by eqns. (1) & (2)] becomes, 

 

 

𝑥 1
𝑥 2
𝑥 3
𝑥 4

 =  

0 1 0 0
0 −38.9105 −14083 0
0
0

0
0

0
−32400

1
−216

  

𝑥1

𝑥2
𝑥3

𝑥4

 +  

0
0
0

−47952

 𝑢 ……  6.1 𝑎 𝑎𝑛𝑑 

 

𝑦 =  
1 0 0 0
0 1 0 0

  

𝑥1

𝑥2
𝑥3

𝑥4

 …… (6.1 𝑏) 

 

Open loop poles of the system: 𝑷 =  0 −38.91 −108 + 𝑗144 −108 − 𝑗144  
 

Desired closed loop system poles taken: 𝑷𝒅𝒆𝒔𝒊𝒓𝒆𝒅 =  −300 + 𝑗250 −300 − 𝑗250 −72 −61  
 

Desired observer poles taken: 𝑶𝒃 =  −1740 −1800  
 

State Feedback Gain matrix is given by using Ackermann’s formula:  

 

𝑲 =   0.9918 0.0219  −3.6971 −0.0100  
 

Observer Gain matrix is also obtained by using Ackermann’s formula: 𝑴 =  
0 −0.2360
0 −169.1141

  

In the design of Das & Ghosal observer L matrix has been chosen from the linearly independent columns of (𝐼4×4 − 𝐶𝑔𝐶) 

matrix. 

 𝐼4×4 − 𝐶𝑔𝐶 =  

0 0 0 0
0 0 0 0
0
0

0
0

1
0

0
1

  𝑠𝑜 𝑡𝑕𝑒 𝐿 𝑚𝑎𝑡𝑟𝑖𝑥 𝑐𝑎𝑛 𝑏𝑒 𝑓𝑜𝑟𝑚𝑒𝑑 𝑎𝑠 𝐿 =  

0
0

0
0

1 0
0 1

 ; 

 

Finally unit step simulation is done on the combined model (i.e. Roll Position Demand Autopilot + DGO + state feedback), 

given by matrix eqns. (5.12a), (5.12b) & (5.12c), by using Matlab software (version 7.12, 2012a) and the results obtained, 

are presented below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.1: Roll Angle 
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Figure 7.2: Roll Rate 
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N.B: In all of the above four graphs the blue lines indicate the original states of the Roll Position Demand Autopilot and the 

red starred lines indicate the estimated states by reduced order Das & Ghosal observer (DGO) 

 

VII. OBSERVATIONS AND DISCUSSIONS 
It can be readily inferred that the overall responses are improved and very much satisfactory. The Roll position 

demand is met exactly without any steady state error. No oscillations or peak is observed. Moreover within 0.1 second it has 

reached the steady level which is a very graceful performance. Aileron deflections are seen to be very low. It has also come 

down to zero within only 0.04 seconds. It is established through the simulation that Das & Ghosal observer has successfully 

caught the system states within less than 0.02 seconds and that also without any steady state error or oscillations. Further the 

experiments have also been carried out on the very well known and well used Luenberger observer [12] & [13] in place of 

Das & Ghosal [5] and it is seen that Luenberger observer will work only when the C matrix lies in the standard form 
 𝐼 ⋮ 0  otherwise not. Like here C matrix is in the standard form. Otherwise it will require an additional coordinate 

transformation to bring back the C matrix in the standard form and then only Luenberger observer will succeed. This is a one 

of the greatest advantages [6], [7] of Das & Ghosal observer over Luenberger. In the simulation and actual practice in the 

system it should be considered to combine with the difficulty of measuring the variables and the measurement accuracy 

requirements, in order to choose the proper root to meet the engineering requirements. 
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Figure 7.3: Aileron Deflection 
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Figure 7.4: Rate of Aileron Deflection 
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