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Abstract: Free torsional vibration of doubly symmetric thin-walled beams of open section using spectral dynamics 

is carried out in this paper. Frequency equation for the case of doubly symmetric thin-walled beam with unequal 

rotational restraints at the ends of the beam is derived in this paper. The derived Frequency equation with 

appropriate boundary conditions is derived and is solved for varying values of warping parameter and the 

rotational restraint parameters. The effects of the unequal rotational restraint parameters and the warping 

parameter on the free torsional vibration frequencies are investigated in detail. A computer program using 

MATLAB is developed to solve the spectral frequency equation derived. Natural frequencies for various values of 

unequal rotational restraint parameters for different values of warping parameter are obtained. Results are 

presented in both tabular as well as graphical form showing the influence of these parameters on the values of 

fundamental torsional frequency parameters clearly. 
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I. Introduction 

In many practical situations, by using elastically restrained edges against the rotation and translation, one 

can simulate the complex boundary conditions of structural members. 

 The problem of vibrations of generally restrained beams with various combinations of boundary 

conditions has been investigated by many researchers in the available literature Computation of natural 

frequencies and mode shapes of cantilever beams with flexible roots has been studied well [3, 5, 9-11]. Kameswara 

Rao and Mirza [12] derived the transcendental frequency equation and mode shape expressions for the case of 

generally restrained Euler-Bernoulli beams and presented extensive numerical results for various values of linear 

and rotational restraint parameters. 

Strangely, there are quite a good  number of publications on flexural vibrations of elastically restrained 

cantilever beams, the literature on torsional vibrations of doubly symmetric thin-walled beams of open section is 

surprisingly scarce. Including elastic torsional and warping restraints, Carr [15] and Christino and Salmela [13] 

presented numerical results using approximate methods for the calculation of natural frequencies. Torsional 

vibration frequencies for beams of open thin-walled sections, subjected to several combinations of classical 

boundary conditions were first derived by Gere [14].  

Burlon et al [15] proposed an exact approach to coupled bending and torsional free vibration analysis of 

beams with mono-symmetric cross section, featuring an arbitrary number of in-span elastic supports and attached 

masses. The proposed method relies on the elementary coupled bending-torsion theory and makes use of the theory 

of generalized functions to handle the discontinuities of the response variables. In another paper, Burlon et al [16] 

investigated the stochastic response of a coupled bending–torsion beam, carrying an arbitrary number of 

supports/masses. Using the theory of generalized functions in conjunction with the Euler–St.Venant coupled 

bending–torsion beam theory, exact analytical solutions under stationary inputs are obtained based on frequency 

response functions derived by two different closed-form expressions. 

     The review presented by Sapountzakis[19], clearly shows that the problem of free torsional vibration 

analysis of doubly-symmetric thin-walled I-beams or Z-beams subjected to partial warping restraint is not being 

addressed till now in the available literature. In view of the same, an attempt has been made in this paper to present 

a spectral dynamic analysis of free torsional vibration of doubly-symmetric thin-walled beams of open section 

with unequal rotational restraints at the ends of the beam including the effects of non-linear warping parameter.  

The resulting spectral frequency equation is solved for varying values of warping parameter and the 

partial rotational restraint parameters. The influence of unequal rotational restraint parameters along with warping 
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parameter on the free torsional vibration frequencies is investigated in detail by utilizing a computer program 

developed using MATLAB, to solve the spectral frequency equation derived in this paper. Numerical results for 

natural frequencies for various values of unequal partial rotational restraint parameters are obtained and presented 

in both tabular as well as graphical form for use in design, showing their parametric influence clearly. 

 

II. Formulation and Analysis 

Consider a long doubly-symmetric thin-walled beam of open cross section of length L and the beam as undergoing 

free torsional vibrations. The corresponding differential equation of motion can be written as: 

𝐸𝐶𝑊
𝜕4𝜑

𝜕𝑧4 − 𝐺𝐶𝑆
𝜕2𝜑

𝜕𝑧2 + 𝜌𝐼𝑃
𝜕2𝜑

𝜕𝑡2 = 0               (1) 

where, 

E= young’s modulus, 𝐶𝑊=warping constant,𝐺 =shear modulus,𝐶𝑆 = torsion constant, 𝜌 =mass density of the 

material of the beam, 𝐼𝑃 =polar moment of inertia, 𝜑 = angle of twist, z= distance along the length of the beam. 

For free torsional vibrations, the angle of twist 𝜑(𝑧, 𝑡) can be expressed in the form. 

𝜑(𝑧, 𝑡) = 𝑥(𝑧)𝑒𝑖𝜔𝑡                                (2) 

𝑥(𝑧) = C𝑒𝑚𝑧                                 (3) 

In which 𝑥(𝑧) is the modal shape function corresponding to each beam torsional natural frequency 𝜔. 

The expression for 𝑥(𝑧)which satisfies Eqn. (1) can be written as: 

𝑥(𝑧) =  A𝑒+α𝑧 + B𝑒−α𝑧 + C𝑒+𝑖β𝑧 + D𝑒−𝑖β𝑧       (4) 

in which, 

βL, αL = √∓𝐾2+√𝐾4+4𝜆2

2
                   (5) 

where, 

𝐾2 = (
𝐺𝐶𝑆𝐿2

𝐸𝐶𝑊
) ; Non- dimensional warping parameter 

𝜆2 = (
𝜌𝐼𝑃𝜔2𝐿4

𝐸𝐶𝑊
); Non- dimensional frequency parameter 

From Eqn. (4), we have the following relation between αL and βL 

(αL)2 = (βL)2 + 𝐾2                           (6) 

KnowingαL and βL, the frequency parameter λ can be evaluated using the following equation: 

𝜆2 = (αL)(βL)                              (7) 

 

The four arbitrary constants A, B, C and D in Eqn. (4) can be determined from the boundary conditions of the 

beam. For any single-span beam, there will be two boundary conditions at each end and these four conditions then 

determine the corresponding frequency expression. 

 

III. Derivation of Spectral Frequency Equation 

Consider a thin-walled doubly symmetric I-beam with both the ends restrained by unequal rotational springs as 

shown in figure 1, undergoing free torsional vibrations. In order to derive the spectral frequency equation for this 

case, let us first introduce the related nomenclature. 

 

 
(a) 
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(b) 

Figure 1(a). Thin-Walled Open Section I-Beam with Unequal Rotational Restraints at the Ends. (b). Cross-

section of the beam (at x-x). 

 

The variation of angle of twist φ with respect to z is denoted byθ(z). The flange bending moment and the total 

twisting moment are given by M(z)and T(z). Considering clockwise rotations and moments to be positive, we have 

𝜃(𝑧) =
𝑑𝜑

𝑑𝑍
; ℎ𝑀(𝑧) = −𝐸𝐶𝑊

𝑑2𝜑

𝑑𝑧2               (8) 

𝑇(𝑧) = −𝐸𝐶𝑊
𝑑3𝜑

𝑑𝑧3 + 𝐺𝐶𝑆
𝑑𝜑

𝑑𝑍
                 (9) 

where 𝐸𝐶𝑊 =
𝐼𝑓ℎ2

2
   𝐼𝑓 being the flange moment of inertia and h is the distance between the centerlines of the 

flanges of a thin-walled I-beam  

Taking S1 and S2 as the stiffnesses of the rotational springssituated at both ends and 𝑅1 = (𝑆1L/E𝐶𝑊) and 𝑅2= 

(𝑆2L/E𝐶𝑊) as the non-dimensional rotational spring stiffness parameters and Z=(z/L) as the non-dimensional 

length of the beam, the boundary conditions can be easily identified as follows: 

At Z =0, 𝜑 =0,
 𝑑2𝜑

𝑑𝑍2 = 𝑅1
𝑑𝜑

𝑑𝑍
                    (10) 

And at Z = L, 𝜑 =0, 
𝑑2𝜑

𝑑𝑍2 = 𝑅2
𝑑𝜑

𝑑𝑍
               (11) 

Applying the above given boundary condition, the spectral frequency equation obtained for this case under 

study is as given below: 

𝑅1𝑅2(𝐹2𝑄1𝑚2 + 𝑆1) + (𝑅1 + 𝑅2)𝐹1𝑆2 + 𝐹3𝑄1𝑚2 = 0  (12) 

where 

 𝐹2 =
(𝛼2−𝛽2)

(𝛼𝛽)
;  𝐹3 =

(𝛼2+𝛽2)

(𝛼𝛽)
;  𝐹4= 

(𝛼4+2𝛼2𝛽2+𝛽4)

(𝛼𝛽)
;    (13) 

𝑄1 =
1+𝑒2𝐿(𝛼+𝑖𝛽)

4𝑒𝐿(𝛼+𝑖𝛽) ; 𝑄2 =
1+𝑒2𝐿(𝛼−𝑖𝛽)

4𝑒𝐿(𝛼−𝑖𝛽) ; 𝑄3 =
1−𝑒2𝐿(𝛼+𝑖𝛽)

4𝑖𝑒𝐿(𝛼+𝑖𝛽) ; 𝑄4 =
1−𝑒2𝐿(𝛼−𝑖𝛽)

4𝑖𝑒𝐿(𝛼−𝑖𝛽)                        (14) 

𝑄1𝑝2 = (𝑄1 + 𝑄2), 𝑄1𝑚2 = (𝑄1 − 𝑄2), 𝑄3𝑝4 = (𝑄3 + 𝑄4), 𝑄3𝑚4 = (𝑄3 − 𝑄4)                   (15) 

S1= 2(1 −  𝑄1𝑝2); S2=(𝛼3𝑄3𝑝4 − 𝛽3𝑄3𝑚4); S3=(𝛼𝑄3𝑚4 − 𝛽𝑄3𝑝4)                          (16) 

 

Three degenerate cases of spectral frequency equations can be easily obtained from Equation (12) as follows: 

(i) For 𝑅1 = 0 and 𝑅2 = 0, we get the case of simply supported beam for which we obtain 

 𝑄1𝑚2 =  0                                 (17) 

 

(ii) For 𝑅1 = 0 and𝑅2 = ∞, we get the case ofa beamsimply-supported at one end and clamped at the other end 

for which we obtain 

 𝑆2 = 0                                   (18) 

 

(iii) For 𝑅1 = ∞ and 𝑅2 = ∞, we get the case of a beam clamped at both ends for which we obtain 

𝐹2𝑄1𝑚2 + 𝑆1 =  0                           (19) 
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IV. Results and Discussions 

Numerical results for the first three natural torsional frequencies of vibration of thin-walled beams of 

open section are obtained by solving the transcendental spectral frequency Eq. (12) using trial-and-error method. 

The Muller’s iteration technique based on bisection method is coded in MATLAB and the same is utilised in 

generating the numerical results whichare presented in several tables and graphs suitable for use in design. 

It should be mentioned here that even though several studies are made by researchers in the area of 

torsional frequencies of thin-walled beams of open section, numerical values are not made available for use in 

design. As is known, graphical results can help us only in understanding the trend of variation of natural 

frequencies due to the increase in warping parameter 𝐾 and the partial warping restraint parameters 𝑅1 and 𝑅2, 

but will not provide the frequencies to the four digit accuracy which we require for using the same for design. 

For the case of unequally rotationally restrained thin-walled beam with partially restrained warping (𝑅1) 

varying from o to 10+18 at the left end and with partial warping restraint (R2) varying from 0 to 10+18 at the other 

end, the fundamental mode torsional frequencies for a fixed value of warping parameter 𝐾=0.0 are presented in 

Table 1. The fundamental mode torsional frequencies are determined for a wide range of 𝑅1 and R2 but only a 

representativeset of values are presented in Table 1. Figure 2 represents the variation of frequency parameter with 

rotational restraints (𝑅1& 𝑅2 = 0 to 10+18) for a givenwarping parameter, 𝐾 = 0, whereas, Figure 2 (a) is drawn 

to clearly show the variation of the fundamental first mode frequencies with different values of  𝑅1 and 𝑅2. 

Similarly, the fundamental frequency parameters with warping parameter  (𝐾 =
0 𝑡𝑜 500) for  𝑅1and  𝑅2 varying from 0 to 10+18 are computed and presented in Tables 2 and 3. Also, the 

variation of frequency parameter with warping parameter  (𝐾 = 0 𝑡𝑜 500)  for 𝑅1  and 

𝑅2 varying from 0 to 10+18 are shown in Figure 3 to 8. 

 

Table 1. First mode natural frequencies for various values of rotational restraint parameters R1 and R2 and for 

warping parameter 𝐾 = 0.0. 

𝑹𝟏  𝑹𝟐 = 𝟎  𝑹𝟐 = 𝟎. 𝟎𝟏  𝑹𝟐 = 𝟎. 𝟏 𝑹𝟐 = 𝟏 𝑹𝟐 = 𝟏𝟎 𝑹𝟐 = 𝟏𝟎𝟎 𝑹𝟐 = 𝟏𝟎𝟎𝟎 𝑹𝟐 = 𝟏𝟎𝟏𝟖 

0 3 1416 3 1432 3 1572 3 2733 3 6646 3 8892 3 9227 3 9266 
0 01 3 1432 3 1448 3 1588 3 2748 3 6660 3 8905 3 9240 3 9279 

0 1 3 1572 3 1588 3 1727 3 2881 3 6781 3 9024 3 9359 3 9398 

1 3 2733 3 2748 3 2881 3 3988 3 7806 4 0043 4 0379 4 0418 

10 3 6646 3 6660 3 6781 3 7806 4 1557 4 3900 4 4260 4 4303 

100 3 8892 3 8905 3 9024 4 0043 4 3900 4 6413 4 6807 4 6853 

1000 3 9227 3 9240 3 9359 4 0379 4 4260 4 6807 4 7206 4 7253 

1018 3 9266 3 9279 3 9398 4 0418 4 4303 4 6853 4 7253 4 7300 

 

Table 2. First mode natural frequencies for various values of rotational restraint parameters R1 and R2 and for 

warping parameter 𝐾 = 1.0. 

𝑹𝟏  𝑹𝟐 = 𝟎  𝑹 = 𝟎. 𝟎𝟏  𝑹𝟐 = 𝟎. 𝟏  𝑹𝟐 = 𝟏  𝑹𝟐 = 𝟏𝟎  𝑹𝟐 = 𝟏𝟎𝟎  𝑹𝟐 = 𝟏𝟎𝟎𝟎  𝑹𝟐 = 𝟏𝟎𝟏𝟖  

0 3 2183 3 2198 3 2328 3 3416 3 7165 3 9363 3 9694 3 9733 
0 01 3 2198 3 2213 3 2343 3 3430 3 7178 3 9376 3 9707 3 9746 

0 1 3 2328 3 2343 3 2473 3 3555 3 7293 3 9490 3 9821 3 9860 

1 3 3416 3 3430 3 3555 3 4601 3 8275 4 0471 4 0803 4 0842 
10 3 7165 3 7178 3 7293 3 8275 4 1916 4 4227 4 4584 4 4626 

100 3 9363 3 9376 3 9490 4 0471 4 4227 4 6707 4 7098 4 7144 

1000 3 9694 3 9707 3 9821 4 0803 4 4584 4 7098 4 7495 4 7541 

1018 3 9733 3 9746 3 9860 4 0842 4 4626 4 7144 4 7541 4 7588 

 

Table 3. First mode natural frequencies for various values of rotational restraint parameters R1 and R2 and for 

warping parameter 𝐾 = 500. 

𝑹𝟏  𝑹𝟐 = 𝟎  𝑹 = 𝟎. 𝟎𝟏  𝑹𝟐 = 𝟎. 𝟏  𝑹𝟐 = 𝟏  𝑹𝟐 = 𝟏𝟎  𝑹𝟐 = 𝟏𝟎𝟎  𝑹𝟐 = 𝟏𝟎𝟎𝟎  𝑹𝟐 = 𝟏𝟎𝟏𝟖  

0 39 6337 39 6337 39 6337 39 6337 39 6344 39 6403 39 6601 39 6734 

0 01 39 6337 39 6337 39 6337 39 6337 39 6344 39 6403 39 6601 39 6734 
0 1 39 6337 39 6337 39 6337 39 6338 39 6344 39 6403 39 6601 39 6734 

1 39 6337 39 6337 39 6344 39 6338 39 6345 39 6404 39 6602 39 6734 

10 39 6344 39 6344 39 6344 39 6345 39 6352 39 6410 39 6609 39 6741 
100 39 6403 39 6403 39 6403 39 6404 39 6410 39 6469 39 6667 39 6800 

1000 39 6601 39 6601 39 6601 39 6602 39 6609 39 6667 39 6866 39 6999 

1018 39 6734 39 6734 39 6734 39 6734 39 6741 39 6800 39 6999 39 7132 

 

It has been observed from Table 1 to 3 that the increase in warping parameter  𝐾 is to increase the 

fundamental mode torsional frequencies significantly. However, the change is very marginal when warping 

parameter is very low. But, the change is phenomenal at higher values of warping parameter 𝐾. For values 

of 𝐾 greater than 10, we can easily notice that the frequencies of un-symmetrically rotationally restrained beam 

almost tend to converge to a constant value as 𝐾 approaches higher values (refer Table 4). For a constant value of 
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warping parameter 𝐾, the increasing the values of partial warping parameters 𝑅1 and 𝑅2 from 0 to infinity (1018) 

results in consistent increase in the values of fundamental mode frequencies as the un-symmetrically rotationally 

restrained ends become stiffer and stiffer. 

 

Table 4. The percentage variation of frequency parameter with increasing values of 𝑅1 𝑎𝑛𝑑 𝐾and as 𝑅2 varies 

from 0 to 10e+18. 
 K=0 01 K=0 1 K=1 K=10 K=100 K=500 

R1=0 24 98727 24 98727 24 97136 5 40046 0 503697 0 100167 

R1=0 01 24 965 24 96819 24 94911 5 400178 0 503697 0 100167 
R1=0 1 24 78779 24 78779 24 77201 5 40324 0 503695 0 100167 

R1=1 23 47784 23 47784 23 46671 5 428105 0 503672 0 100167 

R1=10 20 8945 20 8945 20 8829 5 586165 0 504031 0 100166 
R1=100 20 46951 20 46951 20 46173 5 80139 0 506375 0 100151 

R1=1000 20 4604 20 4604 20 45269 5 851407 0 508139 0 100353 

R1=10e+18 20 46045 20 46045 20 45275 5 857844 0 50903 0 100319 

 

 

 
(a) 

 
(b) 
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(c) 

Figure 2. (a), (b) and (c). Variation of frequency parameter with rotational restraints (R1&R2=0 to 1018) for a 

given Warping parameter (K=0). 

 

 
Figure 3. Variation of frequency parameter with rotational restraints (R1&R2=0 to 1018) for a given Warping 

parameter (K=0.01). 

 

 
Figure 4. Variation of frequency parameter with rotational restraints (R1&R2=0 to 1018) for a given Warping 

parameter (K=0.1). 
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Figure 5. Variation of frequency parameter with rotational restraints (R1&R2=0 to 1018) for a given Warping 

parameter (K=1). 

 

 
(a) 

 
(b) 

Figure 6. (a) and (b). Variation of frequency parameter with rotational restraints (R1&R2=0 to 1018) for a given 

Warping parameter (K=10). 
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Figure 7. Variation of frequency parameter with rotational restraints (R1&R2=0 to 1018) for a given Warping 

parameter (K=100). 

 

 
Figure 8. Variation of frequency parameter with rotational restraints (R1&R2=0 to 1018) for a given Warping 

parameter (K=500). 

 

From the definition of non-dimensional warping parameter𝐾 , we can understand that the torsional 

frequency increases for increasing values of torsion constant 𝐶𝑆 or for decreasing values of warping constant 𝐶𝑊. 

Effect of 𝐾 also can be seen to be more predominant compared to the effect of partial warping restraint  𝑅. This 

can be observed from Figure 2 to 8, whereaswhen𝐾 is increasing from 0 to 500, the two curves related to the un-

symmetrically rotationally restrained beam with full restraint and the one with unrestrained warping are almost 

converging to the same value and hence we can conclude that the boundary condition has insignificant effect on 

the natural torsional frequencies of thin-walled doubly symmetric beams for very high values of warping 

parameter𝐾. 

Fundamental mode torsional frequencies of thin-walled beams for a wide range of values of warping 

parameter 𝐾 from 0.01 to 500 and the partial warping restraints 𝑅1 and R2 from 0 to 1018arecalculated. These 

results are also plotted in Figures 2 to 8 showing clearly the variation of fundamental natural torsional frequency 

with varying values of warping parameter  𝐾 and the partial warping restraint parameters R1 and R2 . The 

percentage variation of frequency parameter with increasing values of 𝑅1 and 𝐾 and as 𝑅2 varies from 0 to 10+18is 

presented in Table 4. The percentage variation of frequency parameter changes from 24.98 to 20.46for a given 

value of K and as R1 and R2 varies from 0 to 10+18. The change of percentage decreases with 𝐾 for a given value 

of 𝑅1 and as 𝑅2 vary from 0.01 to 10+18 as shown in Table 4. 

By using latest approximate methods such as Generalised Differential Quadrature Method (GDQM), 

Differential Transform Method (DTM), Adomian Decomposition Method (ADM). or any other method such as 

Finite Element Method one can attempt to obtain results and compare the same with the results presented in this 

paper and determine their accuracy. 
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V. Concluding Remarks 

For the case of an un-symmetrically rotationally restrained thin-walled beam of doubly symmetric open 

cross-section undergoing free torsional vibrations and subjected to partial warping restraint, the spectral frequency 

equation is derived in this paper. The resulting transcendental frequency equation for the case of un-symmetrically 

rotationally restrained boundary conditions is solved for thin-walled beams of open cross section for varying 

values of warping parameter and the partial warping restraint parameters. Using a MATLAB computer program 

developed to solve the spectral frequency equation derived. 

The influence of partial warping restraint parameter R1 and R2 and the warping parameter 𝐾on the free 

torsional vibration frequencies is investigated in detail and significant amount of numerical frequency data is 

generated. The results obtained are presented in both tabular as well as graphical form showing their parametric 

influence clearly. In comparison with the partial warping restraint parameter R1 and R2 , the warping 

parameter 𝐾 is found to have significant effect on the torsional natural frequencies. Spectral dynamic analysis of 

free torsional vibration of doubly symmetric thin-walled beams of open section is carried out and detailed results 

of this study are presented in this paper suitable for use in design and also for checking approximate solutions 

obtained for their accuracy. 
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