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ABSTRACT: - The flow of natural gas in gas pipelines has been attended with the problem of pressure drop 

along the pipeline. The magnitude of the pressure drop is known to be affected by certain flow variables such as 

flow velocity or volumetric flow rate, bulk flow temperature, ambient conditions, nominal pipe diameter, pipe 

roughness (relative or absolute), etc. Other factors that will affect throughput and pressure drop relationship are 

design and construction of the piping system, piping materials, pipe wall thickness, terrain of a place, 

enlargement and contraction along the pipes, pipe conditions (vacuum and weight of the overlying materials be 

it water or earth mass), etc. It is well established that the flow of natural gas in gas pipelines is not essentially 

single phase flow situation. To tackle flow problems well-known flow equations used in the gas transmission 

industries are: Weymouth equation, Panhandle A, and Modified Panhandle B. There is no adequate 

understanding of the flow variables as it affects throughput-pressure drop relationship in a gas flow line. Hence 

the call for more revelation in this area of knowledge by the development of mathematical models that will 

optimize flow variables in gas pipelines aroused. 
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I INTRODUCTION 

Natural gas is the sub-category of petroleum product. It is a naturally occurring substance, a complex 

mixture of hydrocarbon and traces of inorganic compounds. In terms of the World’s energy supply and demand 

natural gas is next to petroleum (crude oil). One cubic metre of natural gas, when combusted will generates 19 

to 43KJ of heat depending on the gas composition [1].  In the global World, natural gas is becoming a 

competing energy source to petroleum. It is a fuel source for devices like automobiles, aircraft, power plant and 

domestic appliances. There is every hope and aspiration that with the passage of time it would be a more 

dominant energy source compared to petroleum or crude oil. Even there is this global anxiety of depletion of 

crude oil. 

Transportation or transmission of crude oil or natural gas is through a piping network. The design, 

construction, and operation of the piping network rely on adequate knowledge of the flow variables. The 

metering of the gas is by volume measurement and it is dependent on both pressure and temperature; natural gas 

being a compressible fluid. These considerations prompt the need for flow variables optimization. Optimization 

of flow calls for the development of mathematical models that will relate throughput to pressure drop along gas 

pipelines, more importantly, the main (trunk) line or any category of the pipelines. 

 

II PURPOSE AND SIGNIFICANCE 

Attainment of optimal conditions of performance in the cost of investment and operation of gas 

pipelines assets and facilities; even setting optimal conditions for certain critical flow control variables such as 

flow capacity and overall line pressure drop. This would go a long way in ascertaining optimum power to 

conduct a fluid stream through a piping network system. 

 

III MATHEMATICAL MODELS DEVELOPMENT 

Unit Consistency 

Most of the oil and gas industries use the unconventional system of units like the imperial system of the 

units, the British system of units, the cgs system of unit (centimetre, gram, second). The approach in this work 

will be system international (S.I) units.   

Weymouth Equation 
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             The constant K, in Weymouth equation shall be converted to the S.I. form. 
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In the Weymouth equation 1, flow capacity, Q is in m
3
/day, pressure, P is in bar, length, L is in Km, temperature, 

T is in K, diameter, D is in cm, specific gravity, G, friction factor, f, and compressibility factor, Z is 

dimensionless. The constant, K is obtained in the S.I. by the following 
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A. Panhandle A. Equation 
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In the Panhandle A.  equation 2,  flow capacity, Q is in m
3
/day, pressure, P is in bar, length, L is in Km, 

temperature, T is in K, diameter, D is in cm, specific gravity, G, friction factor, f, and compressibility factor, Z 

is dimensionless. The constant, K is obtained in the S.I. by the following 
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B. Modified Panhandle B.  Equation 
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In the Modified Panhandle B  equation 3,  flow capacity, Q is in m
3
/day, pressure, P is in bar, length, L 

is in Km, temperature, T is in K, diameter, D is in cm, specific gravity, G, friction factor, f and compressibility 

factor, Z are dimensionless. The constant, K is obtained in the S.I. by the following operation: 
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C. Model Development for the Pump Constant 

Model development for the pump constant, kp, is as follows: 

Let Q be the average flow capacity in m
3
/s and P the average stream pressure in bar (N/m

2
).  The required power 

to conduct flow streams through the conduit is expressed as; 

 4FVPW 

Where F is the driving force and V is the flow velocity in m/s. 
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Combining equations 4 and 5;     
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The losses in power due to irreversibility inherent in the pump/compressor could  be expressed as; 
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hl—head loss in the compressor/pump. 

Denoting the pressure drop in the pomp or compressor due to irreversibility by ∆P, the power losses in the 

compressor is, 
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Relating equation 8 to 9, 

 

 11

10)1(

)1(

2

2

A

Q

A

QV

A

Vm

A

F
P

PP

PQQP

iP

iP















Applying equation 10  in   11, 
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Kp—Pump constant 

The isentropic efficiency, ηi=85% to 97.5% for most pumps and compressors [5].   

 

D. Development of Mathematical Models for Change In Flow Capacity Per Unit Change In Pressure    

Drop 

The design, construction and sizing the inline facilities on gas pipelines require accurate values of the flow 

capacity and overall pressure drop along the line. That in itself is not complete without a mathematical model to 

monitor how changes in flow capacity affect overall pressure drop along a line. A mathematical model is 

developed to determine change in flow capacity per unit change in the overall pressure drop,
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The Weymouth equation is expressed as [2]: 
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With respect to equation 14 the following expressions are derived: 

(i) Change in flow rate per unit change in frictional pressure drop. 
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(ii) Change in flow rate per unit change in elevation pressure drop. 
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(iii) Change in flow rate per unit change in acceleration pressure drop. 
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(iv) Change in flow rate per unit change in entrance pressure drop. 
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(v) Change in flow rate per unit change in exit pressure drop. 
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(vi) Change in flow-rate per unit change in enlargement and contraction pressure drop. 
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(vii)   Change in flow rate per unit change in valve pressure drop. 
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(viii)   Change in flow-rate per unit change in fittings pressure drop. 
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(ix)  Change in flow rate per unit change in pump pressure drop. 
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E. Development of Mathematical Model for Change In Flow Capacity Per Unit Change In Pressure  Drop 

Using Panhandle A. Equation 

 

The Panhandle A. equation is given as [3]: 
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 With respect to equation 15 the following expressions are derived: 

(i)   Change in flow-rate per unit change in frictional pressure drop. 
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(ii)   Change in flow-rate per unit change in elevation pressure drop. 
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(iii)  Change in flow-rate per unit change in acceleration pressure drop. 
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(iv) Change in flow-rate per unit change in entrance pressure drop. 
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(v)   Change in flow-rate per unit change in exit pressure drop. 
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(vi) Change in flow-rate per unit change in enlargement and contraction pressure drop. 
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(vii)   Change in flow-rate per unit change in valve pressure drop. 
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(viii)   Change in flow-rate per unit change in fittings pressure drop. 
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(ix)  Change in flow-rate per unit change in pump pressure drop. 
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F. Development of Mathematical Model For Change In Flow Capacity Per Unit Change In Pressure Drop 

Using

 

Modified Panhandle  B  Equation 

The modified Panhandle B Equation goes thus [4]: 
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With respect to equation 16 the following expressions are derived:

 

(i)   Change in flow-rate per unit change in frictional pressure drop. 
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(ii)   Change in flow-rate per unit change in elevation pressure drop. 
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(iii)  Change in flow-rate per unit change in acceleration pressure drop. 
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(iv)  Change in flow-rate per unit change in entrance pressure drop. 
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(vi) Change in flow-rate per unit change in exit pressure drop. 
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(vii) Change in flow-rate per unit change in enlargement and contraction pressure drop. 
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(viii) Change in flow-rate per unit change in valve pressure drop. 
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(ix) Change in flow-rate per unit change in fittings pressure drop. 
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(x) Change in flow-rate per unit change in pump pressure drop. 
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The flow friction factor for single phase regime is expressed as [5]: 
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The analysis and deductions so far with respect to equations 13 to 16 will suffice for determination and 

optimization of flow parameters in a gas flow line when the flow regime is essentially single phase flow 

situation.  

 

IV MODEL APPLICATIONS 

The mathematical models can be applied to any section of a natural gas pipeline network be it the field pipeline 

or gathering system, the main (trunk) line or transmission system, or the service line or distribution system. This 

is to determine the effect of variability in overall pressure drop to changes in certain paramount control variables  

 

V CONCLUSIONS 

The computer simulation of the deductions from equations 13 to 16 can be of immense value in the 

analysis of variables governing pressure-flow problems in gas transmission lines. Such analysis will go a long 

way in the design, construction, operation and investment cost of setting up gas transmission lines as well as the 

cost of maintenance of the lines.

 
 

VI RECOMMENDATION FOR FUTURE RESEARCH 

Computer simulation of equations 13 to 16 can be written to determine the various pressure drop 

components, the overall pressure pressure drop and the change in flow capacity per unit change in the overall 

pressure drop for different natural gas piping network design. 
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