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Abstract:- Mathematical models of growth have been developed a long period of time. Estimating the lag time 

in the growth process is a practically important problem. Any sigmoidal function can be good illustration for the 

concept of lag time. The Schnute growth model is described by free parameters, each contributing to the 

characteristics of the curve: an initial lag or period of slow growth; a period of rapid exponential growth; a 

period of reduced growth rate. In this note we provide estimates for the one–sided Hausdorff approximation of 

the step–function by sigmoidal Schnute function - ( lagnewt  ). Numerical examples, illustrating our results are 

given, too. 
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I. INTRODUCTION 
Growth curves are found in a wide range of disciplines, such as biology, chemistry and medical science. 

Estimating the lag time in the growth process is a practically important problem [1], [2]. 

Any sigmoidal function can be good illustration for the concept of lag time. The growth model is described by 

free parameters, each contributing to the characteristics of the sigmoidal function. 

These parameters may be useful for describing biologically relevant metrics as a lag phase, the growth phase, 

and the plateau phase. 

The lag time - lagt  (see Fig. 1) is estimated by extending the tangent at inflection point to the initial 

baseline. 

The Schnute curve is described by free parameters, each contributing to the characteristics of the curve: an 

initial lag or period of slow growth; a period of rapid exponential growth; a period of reduced growth rate. 

The Schnute function finds applications in many scientific fields, including population dynamics, bacterial 

growth, population ecology, plant biology, chemistry and statistics. 

In his classical paper, Schnute [3] considered the accelerated growth rate of species, and solved the model 

system: 
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The basic form of this model is:  
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The values 1t  and 2t  are fixed and are normally taken to be the smallest and largest diameters in the 

data. )(= 11 tLl  and )(= 22 tLl  are the initial and final population densities, respectively (generally 12 > ll ); 

0a  and 0b  are rate parameters. 

 

For some modelling aspects and parameter estimations, see [4], [6], [7], [8], [9], [14], [15], [16], [17], [18], [19], 

[20], [21]. 

At t  the function arrived an asymptotic value of [14], [22], [23]  
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The coordinate of the inflection point, will be obtained from  
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 and the corresponding ordinate is  
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Figure  1: Definitions: a) lagt  - is estimated by extending the tangent at inflection point to the initial baseline; b) 

lagnewt   - the one–sided Hausdorff approximation – d  of the step–function by sigmoidal Schnute function. The 

parameters are: 1.1=a , 0.5=b , 0=1t , 1=2t , 1=1l , 1.9=2l ; 0.430683=d . 

   

 In this note we prove estimates for the one–sided Hausdorff approximation of the interval step–

function by sigmoidal Schnute function - ( lagnewt  ). 

Let us point out that Hausdorff distance is the most natural measuring criteria for the approximation of bounded 

discontinuous function [24], [25]. 

 

II. PRELIMINARIES 

  Definition 1. Define the shifted step function 
1
th  as:  
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 Definition 2. The Hausdorff distance (H-distance) ),( gf  between two interval functions gf ,  on  , 

is the distance between their completed graphs )( fF  and )(gF  considered as closed subsets of   [26], 

[27]. More precisely,  

 ||},||infsup||,||infsup{max=),(
)()()()(
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  (8) 

 wherein ||.||  is any norm in 
2 , e. g. the maximum norm |}||,{|max||=),(|| xtxt ; hence the distance 

between the points ),(= AA xtA , ),(= BB xtB  in 
2  is |)||,(|||=|| BABA xxttmaxBA  . 

 

III. MAIN RESULTS 

 We study the one–sided Hausdorff approximation of the shifted step function )(
1

tht  by sigmoidal 

Schnute function )(tL . 

The following Theorem is valid 

 

 Theorem 3.1  For the one–sided Hausdorff distance d  between the function )(
1

tht  and the Schnute function 

(3) the following holds:  

.

)1(

)(
1

=

)
12

(

12

1

1

1

tta

bbb

eb

llal

l
dd












                                                (9) 

 

  Proof. The one–sided Hausdorff distance d  satisfies the relation (see, Figure 1) 
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Let us examine the function  
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Consider function  
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From Taylor expansion  
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we obtain )(=)()( 2dOdFdG   (see, Fig. 2). 

This completes the proof of the theorem. 
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Figure  2: The functions )(dF  and )(dG  for 1.1=a , 0.5=b , 0=1t , 1=2t , 1=1l , 1.9=2l . 

   

The bound for d  computed by nonlinear equation (11) is 0.430683=d . From (9) we have 

0.44486= dd . 

The ”new” lag time is then given in terms of the one–sided Hausdorff distance - d . 

 

38.4538.4517

38.42939.9716

38.391537.2115

38.324736.5014

38.205639.2013

37.993938.0412

37.618637.9711

36.957336.9610

35.804635.669

33.833333.038

30.574930.787

25.506425.216

18.4318.435

10.274211.784

(3)functionSchnutebyfittingeappropriatTheWeightYear

 

Table  1: The oil palm yield data [28], [29] 

 

IV. COMPUTATIONAL ISSUES. FITTING THE NONLINEAR SCHNUTE GROWTH 

MODEL AGAINST EXPERIMENTAL OIL PALM DATA [28], [29] 
Simple module in  CAS Mathematica for calculation of the value of the one–sided Hausdorff distance 

d  between the shifted step function and the sigmoidal Schnute function is visualized on Figure 3. 
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Figure  3: Simple module implemented in programming environment  CAS Mathematica for calculation of the 

value of the one–sided Hausdorff distance d  between the shifted step function and the sigmoidal Schnute 

function. 

 

Example:. The oil palm yield growth data is given in Table 1. 

The appropriate fitting of the experimental data by the Schnute growth function )(tL  with 0.58=a , 

0.015=b , 5=1t , 17=2t , 18.43=1l , 38.45=2l  is visualized on Figure 4 (see also the last column of 

Table 1). 

 

V. CONCLUSION REMARKS 

We propose a modified new–lag–time in terms of Hausdorff distance - d . 

On a number of computational examples we demonstrate the applicability of the Schnute growth function to 

approximate the step function and consequently to be employed in fitting time course experimental data related 

to population dynamics. 

Several sigmoidal functions (logistic [30],[31], Gompertz [32], Richards [33], [34], [35], [36], 

Chapman–Richards (based on the Von Bertalanffy’s approach [37]), and Stannard [38]) were compared to 

describe a growth curve. 

 

 
 Figure  4: The appropriate fitting of experimental data by the Schnute growth function )(tL  with 0.58=a , 

0.015=b , 5=1t , 17=2t , 18.43=1l , 38.45=2l . 

   

For some modelling aspects and parameter estimations, see [18], [1], [2], [39], [40], [41], [42]. 
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The Hausdorff approximation of the interval step function by the logistic and other sigmoid functions is 

discussed from various approximation, computational and modelling aspects in [43]–[51]. 

 

  Definition 3. Define the modified Schnute growth function )(tL
 as ([14], [15]): 
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 where  ,  ,   and   are growth parameters. 

The appropriate fitting of the experimental data by the modified Schnute growth function )(tL
 with 

0.442= , 0.305= , 2.44=  and 7.59=  is visualized on Figure 5. 

 

 

 Figure  5: The appropriate fitting of experimental data by the modified Schnute growth function )(tL
 with 

0.442= , 0.305= , 2.44=  and 7.59= . 

 

Based on the methodology proposed in present note, the reader may be formulate the corresponding 

approximation problems on his/her own. 

For some comparisons and selections of growth models using the Schnute model, see [10], [11], [5], [12] and 

[14]. 
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