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Abstract:- Fuzzy set is very convenient method for representing some form of uncertainty. Basically, the most 

important application of the fuzzy set theory is its ability to represent mathematically a class of decision 

problems called multiple objective decisions. The problems related to this class often involve many goals and 

constraints. The main objective of the fuzzy decision methodology is to obtain an optimum decision in the sense 

that some set of goals is attained while observing a set of constraints simultaneously. The fuzzy set theory uses 

many membership functions which help to attain the desired results and it helps in decision making with more 

precision. In this paper we are going to study the membership functions used in the fuzzy set theory. These 

membership functions are explained thoroughly in this paper and later the difference between these 

memberships functions are shown according to the scenario used for detection of the forest fire. The effect of 

using different membership functions on the decision making is thus shown in this paper. The most efficient 

member function can thus be used for making a system that can help us in decision making more efficiently. 
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I. INTRODUCTION 
 Fuzzy set theory is different from the probability models as it is more efficient in the decision making 

process and it is more helpful in risk assessment rather than the probability models. The Probability models are 

prevalent in risk quantification and assessment. They have become the fundamental basis for informed decision-

making related to risk in many areas. The probability model built upon classic set theory may not be able to 

describe some risks in a meaningful way and the lack of experience data and occurring cause-and-effect 

relationships and imprecise data make it difficult to assess the degree of exposure to certain risk types using 

only traditional probability models. Sometimes, even with a credible quantitative risk model calibrated to 

experience data, the cause of the risk and its characteristics to fully understand it. The models like fuzzy logic 

such as hidden Markov and decision tree models, also the Bayesian networks explicitly consider the cause-and-

effect relationships and recognize the unknown complexity. These newer models might do a better job in 

understanding and assessing certain risks such as operational risk and also the well accepted and complex 

quantitative models are available for market, credit and insurance risk these risks are normally outside the 

control of business managers. On the other hand, with appropriate risk identification and risk control in place 

operational risk can be significantly tackled despite the lack of consensus in which it should be used in which 

quantitative models. Hence it is beneficiary to build and implement more appropriate operational risk models 

using a newer approach such as fuzzy logic. The fuzzy logic can be used in systems like wildfire detection, 

Weather change assessment, drought assessment in these cases it produces more efficient results rather than any 

other approach presently available. The best results are given by th Fuzzy c means clustering for overlapped 

data set and comparatively better than k-means algorithm and unlike k-means where data point should 

exclusively belong to one cluster center here data point is assigned membership to each cluster center as a result 

of which data point may belong to more than one cluster center or to a single cluster also. We can increase the 

number of rules in fuzzy logic which produces more accurate results and hence a more effective decision 

making can be achieved. 
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Figure 1: Fuzzy Logic Process 

 

 Fuzzy logic has a rule base which it uses when a decision making process has to be initiated. The 

values thus given to an fuzzy inference engine is processed with consultation to the rule base and later the de-

fuzification is done so as to produce the values that helps in decision making process. 

 

II. FUZZY SET THEORY & FUZZY LOGIC 
 Suppose we have a set of alternatives such as a set of cities which might be destinations for some future 

travel plans so therefore we  let the set of four decision alternatives be denoted by:- 

 

X = {x1, x2, x3, x4} = {Philadelphia, Los Angeles, Chicago, Newark} 

 

 The set X is a conventional set of objects so therefore we will define a fuzzy subset of the set X and we 

call it A which is characterized by a membership function μA(xi) associating with each xi X a number in the 

interval [0,1] which indicates the grade of membership of xi in A so therefore we suppose for our example A asa 

fuzzy subsets which is defined as: 

 

A = {the city in X is near New Jersey} = {0.7/x1, 0.003/x2, 0.1/x3, 0.9/x4} 

 

where the first number in each pair represents the membership value μA(xi) and the second denotes the 

individual set member xi and the second number in each pair can be dropped with the understanding that the 

fuzzy subset A of X is characterized by the individual μA(xi) and is indexed identically with the elements xi as 

an example we have  

 

μA(x3) = μA(Chicago) = 0.1 

 

 Note the increasing membership values as the indexed cities come closer to New Jersey with Newark 

having the largest membership and if the set X were enlarged to include Brooklyn and Queens as x5 and x6, 

they would have membership values of 1.0 and since both are not only near New jersey they are suburbs within 

New Jersey and are contained in the target city characterizing the fuzzy set A and the concept of a fuzzy set 

includes that of a classical set as a special case by using a step function as the fuzzy membership function and 

therefore we let the fuzzy set A defined on the set X of integers between {1,5} will be defined as the set of 

integers larger than three and therefore we have: 

 

X = {1, 2, 3, 4, 5} and A = {0/1, 0/2, 0/3, 1/4, 1/5}. 

 

 The integers 1, 2, and 3 don't belong to A at all and the integers 4 and 5 belong absolutely to A 

therefore the fuzzy subset A is actually not fuzzy at all with a membership like classical sets. 
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III. OPERATIONS ON FUZZY SETS 
 The various operations that can be employed on fuzzy sets are explained in this section. The various 

operations are as follows: 

 

3.1 Complementation 

 The reasonable operation to consider on a fuzzy set would be complementation and the following 

examples shows how would you describe the complementary set to A of the first example above? Probably, it 

would seem reasonable to consider the complement in English of the word "near", which is "far". Given that we 

know how to characterize the fuzzy set A and its complement is denoted as A' or A is easily computed which is 

having the membership values of 1-μA(). Hence, the given A above would characterize its fuzzy complement A' 

as: 

 

A' = {the city in X far from New Jersey} = {0.4, 0.999, 0.9, 0.1}. 

 

The membership values of the complementary set A' are just 1 - the corresponding μA() membership values. 

Los Angeles, the x2 element, has a high membership in the fuzzy set A' defined as being far from New York. 

 

3.2 Union and Intersection 

 The union operation on fuzzy sets A and B defined on X is denoted as A » B and is the fuzzy set C 

with membership values that are the "MAX" of the component values and this operation is defined if the index 

sets of A and B would have same cardinality. 

i.e.  C = A » B 

Where, 

μC(x) = max[ μA(x), μB(x) ] 

 

 This operation is the fuzzy analog to the normal Boolean logic operation of OR. We will let A and B be 

fuzzy sets defined by the respective arrays of membership values representing an attack aircraft's sensor and 

there three such:- 

X = {x1, x2, x3} and A = {0.6, 0.5, 0.8} and B = {0.8, 0.4, 0.7} 

 The fuzzy set A might represent our best estimate of the relative memberships of the three sensor suites 

in the class of inexpensive electronics sensor suites where the fuzzy set B represent our best estimate of relative 

membership values in the class of battlefield detectors and the fuzzy set C represents the set of OR efficient 

detectors having the membership values:- 

C = {0.7, 0.5, 0.9} 

 The fuzzy OR operation is related to the optimism of the decision maker. Suppose we wanted our 

sensor suite to be both inexpensive and a good detector which leads us to consider finding a fuzzy analog to the 

idea of AND. The fuzzy intersection is a MIN operator on the membership values of A and B and this 

intersection operation is only defined if the cardinality of the index sets of A and B agrees. So we will be 

having:- 

 

D = A Intersection B 

Where, 

 

μD(x) = min[ μA(x), μB(x)] 

 

The set of inexpensive and efficient sensor suites would be characterized by the fuzzy set D whose membership 

values are given by:- 

D = { 0.6, 0.3, 0.8 } 

If we were making a decision about which sensor suite to choose, then an obvious choice would be to buy suite 

x3 since it best satisfies our goals. 

 

3.3 Exponentiation 

Let A be a fuzzy set defined on a set X and let a be a scalar value (for all the cases of interest to us the a's will 

be > 0). The concept of raising the fuzzy set A to the power which is denoted by fuzzy set E is given as: 

μE(x) = [μA(x)]a 

for all x Using the same set A of inexpensive sensor suites characterized above if a = 2, the corresponding to the 

english language quantifier "very" we might characterize the membership values of the three suites in the class 

of "very inexpensive"  sensor suites as: 
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A2 _ CON(A) = { 0.36, 0.25, 0.64 } 

 

This is an example of the ability of fuzzy sets to map from English language quantifiers into quantitative 

measures. The value 2, when applied in this fashion is called a concentrator and when this value is used to 

exponentiation a fuzzy set. The value 0.5 is called a dilator and denoted as DIA()S. 

 

DIA(A)_ A0.5 = { 0.7756, 0.7072, 0.9944 } 

 

 The set DIA (A) is the fuzzy set membership values in the set of inexpensive sensor suites. 

 

IV. MEMBERSHIP FUNCTIONS IN FUZZY LOGIC 
 The various membership functions are discussed in this section. The membership functions play a vital 

role in decision making. The membership functions are shown along with their pictorial representation in this 

section. The pictorial view helps in determining the process of each membership function. 

 

a. S-Shaped Membership Function 

This sp-line based curve is a mapping on the vector x which is named because of its S shape. The A and 

B parameters locate the extremes of the sloped portion of the curve and is given by:-

 
Figure 2: S-Shaped Membership Function 

 

b. Z-shaped Function  

 This spline-based function of x is so named because of its Z shape and the a and b parameters locate 

the extremes of the sloped portion of the curve and is given by:- 

 

 
Figure 3: Z-Shaped Membership Function 

 

c. Triangular Membership Function 

The Triangular membership function is defined by a lower limit a, an upper limit b, and a value m, where a < x< 

b. 

 
Figure 4: Triangular Membership Function 
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d. Trapezoidal membership Function 

The trapezoidal curve is the function of a vector x and it depends on four scalar a, b, c, and d parameters. Its 

expression is given by: 

 
Figure 5: Trapezoidal Membership Function 

 

e. Gaussian Membership Function 

This membership function basically depends only on two parameters sig and c. The expression is given as:- 

 
Figure 6: Gaussian Membership Function 

 

 The function is a combination of two parameters and the first function is specified by sig1 and c1 

which determines the shape of the leftmost curve and the second function sig2 and c2 determines the shape of 

the rightmost curve and also whenever c1 < c2, the Gaussian member function reaches a maximum value of 1 in 

all other cased the maximum value is less than one. 

 

f. Pi Function Member Ship Function 

 Pi-shaped curve is a spline-based curve which is named because of its shape. This membership 

function is evaluated at four points a, b, c, and d from which parameters a and d locate the feet of the curve 

while b and c locate its shoulders. The graph given in figure a = 2 b = 4 c = 5 d = 9.  

 
Figure6: Example of Pie Function 

 

g. Vicinity Function 

The following expression yields the Vicinity function: 

 

 
Figure 7: Vicinity Membership Function 
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V. METHODS FOR DETERMINING MEMBER SHIP FUNCTION 
 Membership functions can be designed by analyzing the problem in hand. There are many possible 

forms of membership functions and many of the fuzzy control operations are drawn from a small set of different 

curves. The methods for determining membership functions may be broadly classified into the following 

categories which are explained briefly as follows:  

a. Subjective evaluation and elicitation 

 Since fuzzy sets are usually intended to model cognitive states and they can be determined from certain 

elicitation procedures. These procedures are provided by the experts in the problem area. More constrained set 

of possible curves are given from which an appropriate one could be taken and hence the users can be tested 

using various tests for more complex methods which can be more efficient.  

 

b. Converted Frequencies or Probabilities 

 It may be possible to use information taken in the form of frequency histograms or other probability 

curves as the basis to construct a membership function each with their own methodological and mathematical 

strengths and loop holes and it should always be remembered that membership functions are not equivalent to 

probabilities.  

 

c. Physical Measurement 

 Many applications of fuzzy logic use physical measurement and almost none of them directly measure 

the membership grade. A membership function is obtained from various other methods then used to calculate 

any data’s individual membership grades. 

 

d. Learning and Adaptation 

Membership functions of fuzzy sets could be adapted and learned from a given set to a function which suits the 

application. 

 

VI. RESULTS 

a. Scenario for Wildfire Detection 

The Scenario which we are using in this implementation is for decision making in wildfire detection which 

implements the clustering technique and uses the cluster switched gateway routing protocol for the effective 

communication. The four input parameters that are part of implementation are:- 

 Temperature  

 Humidity 

 Light Intensity 

 Carbon Monoxide 

There is use of 324 inference rules in the implementation. The platform used for implementation is MATLAB. 

 
Figure 8: Scenario for Implementation 
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b. Pictorial View for each Member Function 

This section shows the pictorial view of various member functions discussed above: 

 

 
Figure9: S-Shaped Membership Function 

 

 
Figure 10: Z-Shaped Membership Function 

 

 
Figure 11: Triangular Membership Function 
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Figure 12: Gaussian Membership Function 

 
Figure 13: Trapezoidal Membership Function 

 

 

 
Figure 14: Pie Membership Function 
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Figure 15: Vicinity Membership Function 

 

VII. CONCLUSION 

 The membership function for a fuzzy set A on the universe of discourse X is defined as µA:X → [0,1] 

where each element of X is mapped to a value between 0 and 1 and the value is called membership value or the 

degree of membership quantifies the grade of membership of the element in X to the fuzzy set A. The 

Membership functions allow us to represent a fuzzy set graphically. The x axis of the graph represents the 

universe of discourse and the y axis of the graph represents the degrees of membership in the interval [0, 1]. The 

result shows us which of member function should be used according to the requirement of building the system. 

The scenario we were taking was of the wildfire detection so we concluded from the above results that the 

Gaussian membership function will be best suited for building this type of decision making system. The 

Gaussian membership function produces smooth curves than its counterpart and we are able to get values at 

every single point which the Triangular, Trapezoidal or Pei member functions cannot produce. So based on the 

study in this paper for making a Wildfire detection scheme the Gaussian member function will produce the 

efficient results. The Gaussian function in our scenario will help us in decision making and will take the 

approach to the right direction and there should be less uncertainty. 
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