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Abstract:- In order to increase power system stability and reliability during and after disturbances, power grid 

global and local controllers must be developed. SCADA system provides steady and low sampling density. To 

remove these limitation PMUs are being rapidly adopted worldwide. Dynamic states of power system can be 

estimated using EKF. This requires field excitation as input which may not available. As a result, the EKF with 

unknown inputs proposed for identifying and estimating the states and the unknown inputs of the synchronous 

machine. 
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I. INTRODUCTION 
 Harmonic injection has been a increasing power quality concern over the years. With the growing the 

use of power electronic devices, the maintenance of power quality has become a major problem for the electric 

utility companies [6]. But high-performance monitoring and control schemes can hardly be built on the existing 

SCADA system which provides only steady, low-sampling density and non synchronous information about the 

network. SCADA measurements are too infrequent and non synchronous to capture information about the  

dynamic system. It is to remove these limitations that wide area measurements and control systems (WAMAC) 

using phasor measurement units PMUs) are being rarely adopted worldwide. 

 The wide area measurement system (WAMS) developed rapidly in most of the years. It has been 

applied to the monitoring and control of power systems. But as a kind of measurement system, WAMS has the 

measurement error and not convinent data unavoidably [3]. The steady measurement errors of WAMS have 

been prescribed in corresponding IEEE standard, but the dynamic measurement errors now become the focus of 

discussion. If the dynamic raw data is applied directly, the unpredictable consequence will be resulted in, which 

will damage to power systems. Therefore, the dynamic state estimation for the state variables during 

electromechanical transient process is the backbone for dynamic applications and real-time control. 

 A number of papers have focused on just one dynamic state of the power system at a time, typically the 

rotor angle or speed which was estimated such as neural networks and AI methods. These AI-based model-free 

estimators generate the estimated rotor speed or rotor angel signal without requiring a mathematical model or 

any machine parameters [1-2]. In the large-scale power system stability analysis, it is often preferable to have an 

exact model for all elements of the power system network including transmission lines, transformers, Induction 

motors, and also synchronous machines. Therefore, the physical model-based state estimator of the generator 

including voltage states in addition to rotor angle and speed would be more interesting in system monitoring and 

control. 

            Synchronized phasor measurement units (PMUs) were introduced, and since then have be-come a 

mature technology is used with many applications which are currently under development around the world. 

The occurrence of major problems in many major power systems around the world has given a new impetus for 

large-scale implementation of wide-area measurement systems (WAMS) using PMUs and Phasor data 

concentrators (PDCs) [4]. Data provided by the PMUs are very accurate and enable system analyzing to 

determine the exact sequence of events which have led to the problems. As experience with WAMS is gained, it 

is natural that other uses of phasor measurements will be found. In particular, significant literature already exists 

which deals with application of phasor measurements to system monitoring, protection, and control. The most 

common technique for determining the phasor representation of an input signal is to use data samples taken 

from the waveform, and apply the discrete Fourier transform (DFT) to compute the phasor measurement. Since 

sampled data are used to represent the reference signal, it is essential that ant aliasing filters be applied to the  

reference signal before data samples are taken. The ant aliasing filters are analog devices which limit the 

bandwidth of the pass band to less than half the sampling frequency. 
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Fig.1 compensating for signal delay introduced by the ant aliasing Filter 

 

             Synchrophasor is a term used to describe a phasor which has been estimated at an instant. In order to 

obtain simultaneous measurement of phasors across a wide area measurement of the power system, it is 

necessary to synchronize these time tags, so that all Phasor measurements belonging to the same time tag are 

truly. Consider the marker in Fig. 1 is the time tag of the measurement. The PMU must then provide the phasor 

given by using the sampled data of the input signal. Furthermore, this delay will be a function of the signal 

frequency [7]. The task of the PMU is to compensate for this delay because the sampled data are taken after the 

ant aliasing delay is introduced by the kalman filter. The synchronization is achieved by using a sampling clock 

pulse which is phase-locked to the one-pulse-per-second signal provided by a GPS receiver. The receiver may 

be built in the PMU, or may be installed in the substation and the synchronizing pulse distributed to the PMU 

and to any other device. The time tags are at intervals that are multiples of a period of the nominal power system 

frequency. 

             

II. SINGLE-MACHINE INFINITE-BUS POWER SYSTEM 
 A general power system can be simplified to an equivalent circuit system with a single machine 

connected to an infinite bus via transmission lines. The so-called single machine infinite-bus (SMIB) system, 

shown in Fig. 2, will be the basis for developing and validating our generator state estimates. Assuming a 

classical synchronous generator model, let define as the rotor angle by which, the q-axis component of the 

 

 
Fig. 2. Synchronous machine connected to an infinite bus via transmission lines. 

 

 Voltage behind transient reactance, leads the terminal bus. If the terminal voltage can be chosen as the 

reference phasor. The 3 phase generator can generate 3 phase voltages and currents can be connected to the 

infinite bus through the transformers and transmission lines. The transformers can be stepped up the voltage. 

The rotor angel and rotor speed can be estimated by the synchronous machine. The generator in Fig. 2 can then 

be represented in the dqo domain by the following eight-order nonlinear equation: 

   

 The state variables and state vectors are calculated as:  

 

                

                                                                                                                                                         (1) 

 

                                                                                              

                                                                                                                                                         (2)   

State variables are described by equations are: 

                                                                                                                                                                     (3) 

                                                                        

                                                                                                                                                                 (4) 

                                                                                       

 

                                                                                                                                                                    (5)   

 

T
xxxxedeqX ]4321[][  

T

fdm uuETu ][][ 21

20

.

1 xwx 

)(
1

21

.

2 DxTu
j

x e 

))((
1

132

0

.

3 ddd

d

ixxxu
T

x 



      Joint State and Parameter Estimation by Extended Kalman filter (EKF) technique 

44 

 

                                                                                                                                                        (6)    

  

               05 x                                                                                                                             (7) 

               06 x                                                                                                                             (8)    

               07 x                                                                                                                             (9) 
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Where   0w   is the nominal synchronous speed (elec.rad/s), the rotor speed (p.u),  mT  the mechanical input 

torque (p.u),  eT  the air-gap torque or electrical output power (p.u), fdE the exciter output voltage or the field 

voltage as seen from the armature (pu), and    the rotor angle in (elec.rad). Other variables and constants are 

defined. Based on the phasor diagram associated to the network  the air-gap torque will be equal to the terminal 

electrical power (or) neglecting the stator resistance is zero: 

    

                     
qqddate ieieiRPT  2

                                                                                        (11) 

where the d-and q-axis voltages can be expressed as 
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Also, the d-axis and q-axis currents are 

    

              

ii qdt

q

t
q

d

t
d

I

x

xV
i

x

xVx
i

22

1

1

13

sin

cos








                                                                                                         (13) 

 

Using (3) and (4) in (2) and after some mathematical simplifi-cation, the electrical output power at terminal bus 

with the state variables and can be obtained as: 
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The output powers ( tt QP , ) are  
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The steady state equations at  
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The above assumptions to find the values of  qd ii ,  
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The air gap torque (or) electrical power can be calculated as: 

                8.0 te PT  

The output powers can be calculated as: 
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III.     LINEAR AND NONLINEAR MODELS 
         Kalman Filter, Extended KF, Unscented KF (UKF) are models popularly used for state estimation 

process. The traditional Kalman Filter is optimal only when the model is linearized.  

 

STATE SPACE MODELS 

           A state space model is a mathematical model of a process, where state  x  of a  process is  represented 

by a numerical vector. 

  

A.   Non linear State Space Model 

 The most general form of the state-space model is the Non linear model. This model typically consists 

of two functions, f and h: 

 

               xk+1 = f (xk,uk,wk)                                                                      (18) 

 

 

              zk = h(xk,vk)                                                                                                  (19) 

 

 
Fig: 3 A general state space model. 
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    B.   State estimation 

 
Fig 4: Mathematical view of state estimation 

 

                  The most general form of an state estimation is known as Recursive Bayesian Estimation. This is 

the optimal way of analyzing a state pdf for any process, given a system and a measurement model.  

 

IV.    KALMAN BASED FILTERS 
A.   Kalman and Extended Kalman filter 

 The problem of state estimation can be made manipulable.  If we put certain constrains on the 

process model, by requiring both ‗f‗ and ‗h„to be linear functions, and the Gaussian and white noise terms ‗w‗ 

and ‗v„to be uncorrelated, with zero mean. Put in mathematical notation, we then have the following 

constraints: 

 

            f (xk, uk, wk) = Fkxk +Bkuk +wk                                                                               (20) 

            h (xk, vk) = H xk +vk                                                                                   (21) 

The constraints described above reduce the state model to: 

                   xk+1 = Fkxk +Bkuk +wk                                                                        (22) 

                      zk = Hk xk +vk                                                                                                 (23) 

Where F, B and H are time dependent matrices. 

 

 
Fig: 5 Kalman filter loop 

 

      The recursive Bayesian estimation technique is then reduced to the Kalman filter, where f and h is 

replaced by the matrices F, B and H. The Kalman filter is, just as the Bayesian estimator, decomposed into two 

steps: predict and update. The actual calculations required are: 

 

Predict next state, before measurements are taken: 

             

                k|k−1 = Fk k−1|k−1+Bkuk                                                                (24) 

    

                Pk|k−1 = FkPk−1|k−1F 
T 

+Qk                                                                                 (25) 

 

 The Kalman filter is quite easy to calculate, due to the fact that it is mostly linear, except for a 

matrix inversion. It can also be proved that the Kalman filter is an optimal estimator of process state, given a 

quadratic error metric. 
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 B. EKF Algorithm Description 

              To derive the discrete-time EKF algorithm, we start from the basic definition of time derivation of a 

variable x: 

 

                                                                                                                                         (26) 

 

where t is the time step, and indicate the time at 0,1….and , or respectively.  

 

                                                                                                                                                (27) 

 

 

                                                                                                                                                (28) 

 

 Where Kx is the system state vector, is the known input vector of the system, is either the process 

(random state) noise or represents inaccuracies in the system model, is the noisy observation or measured 

variable (output) vector, and is the measurement noise.  

Steps to improving the state estimation: 

 

1. Initialize state vector and state covariance matrix   

 

     X= [0; 0; 0; 0; 0.19; 0.04; 8; 0.01]; 

 

      P=diag ([1^2, 0, 10^2,1^2,0.19,19.297^2,0,10^2]);                                                         (29) 

 

      Q=diag ([0.08^2, 0.08^2, 0.08^2,0.09^2,0.08^2,0.08^2,0.19^2,0.09^2]); 

 

      R= ([0.1^2  0  0 ; 0  0.1^2  0;  0  0  0.1^2]); 

 

2. Compute the partial derivative matrices:  

                                                                                                                                               (30) 

 

  

 3. Predict state vector and state covariance 

 

 

                                                                                                                                               (31) 

 

4. Update error covariance 

 

                                                                                                                                               (32) 

5. Perform the gain matrices and update the state vector  

 

 

                          

                                                                                                                                              (33) 
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For calculating the kH  matrix, we same as the 1kF ,the output equation of the system is 
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D.MATAB/SIMULINK MODEL FOR EKF method 

 

 
Fig 6: MATLAB/SIMULINK for EKF 

 

 E. EKF Method Simulation Results 

          The EKF algorithm was developed in Simulink using then embedded function block, just as we did for the 

EKF method. In the latter case, was the only measurable output signal and were the three input signals. But in 

the EKF method, and are the three output measurements and the input signals and are still necessary. The input 

is now assumed to be accessible or known. The initial values vector for states is and for the gain factor matrix is 

. The initial values related to the unknown input are:                                          and   

 

.                                                                                Also, the mean and covariance of the state and output noise 

matrices are as: To better reflect real system conditions, white noise was added to the state with (mean, 

covariance) and to the measured output with (mean, covariance) under these assumptions, the results of the EKF 

algorithm for online state estimation of the fourth order nonlinear model of the synchronous generator subjected 

to a step on are presented in Fig. 4(a). The estimated output signals and the unknown input estimate are also 

shown in Fig. 4(b) and (c), respectively. 

       . 
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A. Rotor angel in rad estimation 

 

                In EKF, the actual value of delta is 0.6.observering from the estimated value is 0.59.The dynamic state 

of power system at the steady state value after applying the non-linear state estimator to get the steady state 

value is 0.598. It‟s to be get the system be stabilized. The figure is drawn between the rotor angle actual to the 

estimated value. 

 

 
B. Rotor Speed rad/sec estimation 

 

           In EKF, the actual value of change in speed is 1.102.observering from the estimated value is 1.108.The 

dynamic state of power system at the steady state value after applying the non-linear state estimator to get the 

steady state value is 1.108. It‟s to be get the system be stabilized. The figure is drawn between the rotor speed 

actual to the estimated value. 

 

 
C. Eq in p.u estimation 
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                In EKF, the actual value of Eq in p.u is 1.102. observe ring from the estimated value is 1.107.The 

dynamic state of power system at the steady state value after applying the non-linear state estimator to get the 

steady state value is 1.107. It‟s to be get the system be stabilized. The figure is drawn between the Eq actual to 

the estimated value 

                  

 
D. ED IN P.U ESTIMATION 

FIG 7:EKF STATE ESTIMATION WITH RESULTS (A) ROTOR ANGEL , (B) ROTOR SPEED,  

(C) EQ ESTIMATION,(D) ED ESTIMATION 
            

          In EKF, the actual value of Ed in p.u is 0.4. observe ring from the estimated value is 0.399.The dynamic 

state of power system at the steady state value after applying the non-linear state estimator to get the steady state 

value is 0.399. It‟s to be get the system be stabilized. The figure is drawn between the Ed actual to the estimated 

value. 

 

F.JOINT STATE AND PARAMETER ESTIMATION: 

 
(8.a) D in p.u estimation 

  

 In EKF, the actual value of D in p.u is 0.05. observe ring from the estimated value is 0.0429.The 

dynamic state of power system at the steady state value after applying the non-linear state estimator to get the 

steady state value is 0.43. It‟s to be get the system be stabilized. The figure is drawn between the D actual to the 

estimated value. The states are observed by the scope to be jointed to the extended kalman filter. The subsystem 

which consists of the SMIB to the kalman filter. The errors of D, J, Tq0, and Tdo can be observed.  
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(8.b)Tdo in p.u estimation 

Fig 8: Joint state and parameter estimation results(a),(b) 

          

 In EKF, the actual value of Tdo in p.u is 0.13. observe ring from the estimated value is 0.44.The 

dynamic state of power system at the steady state value after applying the non-linear state estimator to get the 

steady state value is 0.43. It‟s to be get the system be stabilized. The figure is drawn between the D actual to the 

estimated value. The states are observed by the scope to be jointed to the extended kalman filter. The subsystem 

which consists of the SMIB to the kalman filter. The errors of D, J, Tq0, and Tdo can be observ 

 

V. CONCLUSION 
 In this paper, dynamic state estimation of a power system including the synchronous generator rotor 

angle and rotor speed. The approach was the traditional nonlinear state estimator, the EKF method, which 

includes linearization steps in its algorithm. Simulation results of the EKF estimator showed appropriate 

accuracy in estimating the dynamic states of a saturated fourth-order generator connected to an infinite bus, 

under noisy processes. The developed EKF-based estimators were effective as well under network fault 

conditions with process and measurement noise included. The joint state and parameter estimation results were 

some noised. 
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