
International Journal of Engineering Research and Development

e-ISSN: 2278-067X, p-ISSN: 2278-800X, www.ijerd.com

Volume 11, Issue 07 (July 2015), PP.08-15

8

Exploiting Multi Core Architectures for Process Speed Up

Deepika Roy
1
, N. Saikumari

2
, Ch Umakanth

3
, M. Manju Sarma

4
, B.Lakshmi

5

National Remote Sensing Centre, Indian Space Research Organization, India

Abstract:- As a part of the Indian Space program, Indian Space Research Organization has been developing

and deploying Indian Remote Sensing (IRS) satellites. National Remote Sensing Centre (NRSC) is responsible

for acquiring, processing and disseminating the data products for different users. Pre-processing of satellite data

is one of the important steps in satellite data processing. It involves decoding, decompressing and reformatting

of the satellite data so that it can be given in an appropriate form to next level of processing. The pre-processing

step is time consuming and needs to be optimized to deliver the data products with minimum turnaround time.

This paper presents the design and performance analysis of a dynamically scalable multithreaded process

Keywords:- Multi CPU, Multi Core, Multithreading, Data Parallelism, Performance Speedup

I. INTRODUCTION
 The growing application needs of remote sensing data demand higher spatial, spectral and temporal

resolutions, thus increasing the volumes of data. Added to this, the demand for near real-time supply of data has

increased the need for faster and faster processing. Hence improving process execution times has become an

important concern.

 Earlier the servers used for data processing were single core machines. Saturation of clock speed of

single core processors, made CMP (Chip Multi Processors) as the main stream in CPU designs [1]. The multiple

cores in a processor run at a lower frequency but result in speedup as all cores can be executed in parallel. To

exploit the full capacity of multiple cores the software should be multithreaded which is achieved by splitting

the workload to different cores [2]. This introduced the multithreaded programming paradigm.

The applications which use massive data sets are termed as Data Intensive [5]. Due to large amount of

data to be processed, the data intensive applications are I/O bound and hence there is considerable amount of

CPU idle time which can be utilized by overlapping processing and I/O threads. The number of threads per

processor are to be optimum so that the advantages of multithreading are not overshadowed by the overhead

involved in threads creation and synchronization.

The applications where complex computations are involved are termed as Compute intensive [5]. Due

to heavy utilization of processor these are mostly CPU bound. In case of such applications, it is apt to run one

thread per processor. More than one thread per processor will result in unwanted overhead where time will be

wasted in scheduling the threads and context switching.

The independent frame/block wise format of satellite downlink data makes it a suitable candidate for

multithreaded implementation using data parallelism.

II. PARALLEL COMPUTING DESIGN METHODOLOGY
 Parallel computing is a form of computation in which calculations are carried out simultaneously.

There are several different levels of parallel computing: bit-level, instruction level, data, and task. The form of

parallelism implemented in this paper is SIMD (single instruction multiple data).

The sequential programming method can utilize only one core resulting in underutilization of the multi

core architecture.

In Multi Threaded application, a large data set is broken into multiple subsets and each is assigned to

an individual core. After processing is complete, these subsets are recombined into a single output. This

implementation framework yields high performance by efficiently utilizing multiple cores in multi CPU multi

core architecture.

III. MULTITHREADING MODEL
 The data parallelism model employed here is a variant of Master – Slave (Boss-Worker) model [3]. In

this design, two threads function as boss, one to assign tasks and the other to control the worker threads. The

first boss thread determines the number of worker threads, the data/work partitioning and assigning the jobs to

each worker thread [4].

Exploiting Multi Core Architectures for Process Speed Up

9

 The number of worker threads are determined during run time based on number of free

processors/cores and memory. As the application is designed to run in time sharing environment memory usage

is to be optimum to avoid swapping.

 The first boss thread also sets up various parameters for the worker threads. It initializes information

for each thread like the thread number, data subset to be processed, the output file and location.

 Each worker thread performs the same task on a different data partition. Instead of keeping total subset

data in the memory, the worker thread runs in a loop for predefined blocks of the subset. This ensures optimal

utilization of memory resource. The second boss thread waits for the completion of all the worker threads,

consolidates the output result and performs the final cleaning up.

 The execution of the worker thread is controlled using semaphores. One semaphore is used to control

the group of worker threads to reduce the overhead. Semaphore is initialized to the number of worker threads in

that group and decremented each time a new worker thread is created. The other semaphore is used to control

the joining of the worker threads.

Fig 1: Boss –Worker Thread Model

IV. APPLICATION
 Parallel computing based on Data Parallelism has been applied for Level-0 data processing of recent

IRS satellites such as Oceansat-2, Cartosat-2B, Resourcesat-2 and RISAT-1. The Level-0 processing of IRS

satellite data involves various steps for pre-processing of raw data like extraction of auxiliary data, decoding,

decompression and reformatting of raw satellite data to make it suitable for data product generation.

 A typical application would involve reading of a data partition from disk(I/O operation), processing

it(CPU bound processing) and then writing that processed data back to the disk(I/O operation). Thus we have to

decide the number of threads per processor such that the I/O operation of one thread can be interleaved with the

CPU bound processing of other thread. So minimum number of threads assigned to each processor is 2. The

number of threads per processing unit can be increased based on the CPU idle time.

The following processes are implemented using multithreaded approach for faster processing.

A. Auxiliary Data Extraction Process

 IRS data is received as raw frames each consisting of auxiliary data followed by video data. Auxiliary

data gives the details to interpret the actual image data. It contains information about compression modes,

imaging modes, sensor modes, information about payload health and position. It is necessary to extract this

auxiliary data for further processing of image data.

semaphor

e

Exploiting Multi Core Architectures for Process Speed Up

10

 This process extracts the auxiliary data from every frame of the raw data and writes it into a separate

file. The similarity in format of raw data frames makes it convenient to partition the data among threads. Each

thread then performs similar processing on the data partition assigned to it.

 Each thread is provided with the start and end line of its data partition. All threads simultaneously

access the raw file for reading at a predefined offset. The extracted auxiliary data is also simultaneously written

into the output file at a predefined offset position. This simultaneous reading and writing to the same raw file is

done using the system calls provided by the POSIX threads library.

B. Reed Solomon Decoding

 The IRS satellite data is encoded on board using Reed Solomon Encoding scheme. Encoding helps in

detecting and correcting errors that occur during data transmission and acquisition. RS Encoding scheme used

here is RS (255,247). In this type of encoding, for every 247 symbols 8 parity symbols are appended and sent as

a block of 255 symbols identifying it as a RS block. On ground the 8 parity symbols are used for error detection

and correction of the 247 symbols.

 Each RS block requires similar operation to be performed. Each frame of raw data contains many RS

blocks. This gives scope for parallel computing. So data partitioning between threads is done based on frames.

 The data partitioning scheme has to ensure that there is no dependency between the threads while

handling different satellite data. All threads decode their data subset and write the decoded data simultaneously

in the output file at their designated offsets. Each thread also calculates the number of errors found. In the end

the joining boss thread combines these counters of each thread and gives a single value for determining the

errors in the raw data.

C. Decompression

 IRS satellites apply compression to the payload data to reduce the downlink data rate. Many types of

compression schemes have been used based on the imaging and payload type. Some examples of these

compression schemes are Differential Pulse Code Modulation (DPCM), Multi Linear Gain (MLG) and JPEG

like compression. The concept of data partitioning and multithreading is employed here for exploiting multi-

core architectures.

V. IMPLEMENTATION
The application is implemented using POSIX library for threads and C programming language on

LINUX platform. The POSIX thread library, IEEE POSIX 1003.1c standard, is a standards based thread API for

C/C++ [6]. Pthreads is a shared memory programming model where parallelism takes the form of parallel

function invocations by threads which can access shared global data. Pthreads defines a set of C programming

language types, functions and constants. It allows one to spawn a new concurrent process flow. It is most

effective on multi-processor or multi-core systems where the process flow can be scheduled to run on another

processor thus gaining speed through parallel or distributed processing.

 There are other multithreading models available like compiler based OpenMP and Cilk. Our

application uses POSIX threads as it gives a low level control of thread creation, scheduling, joining,

synchronization, communication and more flexibility in program design. Even though programming with

Pthreads needs considerable threading-specific code, the finer grained control over threading applications

provided by its greater range of primitive functions makes POSIX threads the natural choice for our software[7].

Synchronization between threads is achieved using POSIX semaphores.

 This multithreaded design is generic in nature and can be easily extended to other applications for IRS

satellite level-0 processing where there is a scope of data parallelism.

 This design will work on any system with multi core architecture and will be scaled up/down

dynamically based on the system architecture which in turn will determine the level of parallelism that can be

achieved.

VI. DEPLOYMENT
 The application is deployed on different configurations and it scales itself up or down dynamically

based on the processing units and memory available.

 Deployment is done on Intel and AMD processors without any modifications in the software as it is

POSIX complaint and hence easily portable. It is deployed on architectures such as: Intel Xeon 4 CPU 4 Core

server with 16GB of memory and Red Hat Enterprise Linux version 5.3, Intel Itanium (IA-64) 4 CPU single

core server with 4GB of memory on RHEL version 4, Intel Xeon 4 CPU 4 Core server with 16GB of memory

and Red Hat Enterprise Linux version 5.3 and AMD Opteron 4 CPU 8 Core server with 32 GB of memory and

RHEL 5.5.

Exploiting Multi Core Architectures for Process Speed Up

11

VII. PERFORMANCE EVALUATION

A. Timing Analysis
 The timing analysis was done on two different types of applications. Time taken to execute the

sequential and parallel applications was examined on 4 CPU 8 cores server (32 cores in total). The timing

analysis for these two test cases is as follows.

1) Test case 1- Reed Solomon Decoding

In the first test case, Reed Solomon decoding was run on 6.3 GB of raw data.

The sequential application took 403 seconds to execute.

The following table lists the time taken by the multithreaded data parallel application with varying number of

threads per core

TABLE I: Time taken to run test case 1 with different number of threads

Number of

threads per core

Total number

of threads
Time Taken(seconds)

1 32 72

2 64 70

3 96 65

4 128 63

5 160 63

6 192 60

7 224 50

8 256 60

9 288 68

10 320 70

Fig 2: Number of threads per core vs. time for Test Case 1

2) Test Case 2- Reed Solomon Decoding with DPCM Decompression

 In second test case, the application performed both Reed Solomon decoding and Differential Pulse

Code Modulation Decompression on 9.6 GB of raw data.

The sequential application took 985 seconds to execute.

 The following table lists the time taken by the multithreaded data parallel application with varying

number of threads per core

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10

T
im

e
T

a
k

en

in
 s

ec
o

n
d

s

Number of threads per core

Exploiting Multi Core Architectures for Process Speed Up

12

TABLE II: TIME TAKEN TO RUN THE TEST CASE 2 WITH DIFFERENT NUMBER OF THREADS

Number of

threads per core

Total number

of threads
Time Taken(seconds)

1 32 720

2 64 362

3 96 343

4 128 264

5 160 192

6 192 138

7 224 132

8 256 317

9 288 358

10 320 390

Fig 3: Number of threads per core vs. time for Test Case 2

 It can be observed from the graphs shown in Figure 2 and Figure 3 that the maximum speedup is

achieved when 7 threads are assigned to each core i.e. when 224 threads are created in total. It is also observed

that if the number of threads per core increases beyond 7 the execution time starts increasing. This can be

attributed to the fact that more the number of threads, more time is spent in thread overheads like thread

creation, synchronization, scheduling and swapping and thus performance speedup reduces. Hence the number

of threads should be created based on the nature of the application. Increasing the number of threads may not

lead to increasing the speed up after certain limit and may also cause performance degradation.

B. Speedup Calculation

The speedup achieved by parallelizing the application can be calculated as:

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑇(1)

𝑇(𝑁)
 (1)

Where

T(1) : is the time required to run the serial code on a single processor

T(N): time required to run the parallel code on N processors

Here T(1) contains the time for the serial version Ts and the parallelizable portion Tp of the code. Hence T(1) =

Ts + Tp.

 Theoretically, if a task is split among N processors, it should complete in 1/N of the serial time, giving

a speedup of N. However in real world scenario, there will always be some tasks that need to run serially and

cannot be parallelized. These serial tasks will not run any faster on a multi core system and will take the same

time as taken on a single processor system. Thus the time spent in executing these serial tasks will limit the total

speedup of the parallel application.

 These limitations are taken into account to some extent by Amdahl’s Law, which states that the

speedup of a program using multiple processors in parallel computing is limited by the time needed for the

sequential fraction of the program. So speedup according to this law can be calculated as:

0
100
200
300
400
500
600
700
800

1 2 3 4 5 6 7 8 9 10

T
im

e
T

a
k

en

in
 s

ec
o

n
d

s

Number of threads per core

Exploiting Multi Core Architectures for Process Speed Up

13

𝑆 𝑁 =
𝑇 1

𝑇 𝑁
=

𝑇𝑠+𝑇𝑝

𝑇𝑠+
𝑇𝑝

𝑁

 (2)

Where

Ts : Time taken by the serial part of the code

Tp : Time taken by the parallelizable part of the code

N: Number of processing units (currently 32)

For test case 1,

T(1) = 403 seconds

Ts = 7 seconds

Tp = 396 seconds

N = 32

Substituting these values in the equation 2, we get the speedup factor according to Amdahl’s Law for test case 1

as 20.

For test case 2,

T(1) = 985 seconds

Ts = 14 seconds

Tp = 971 seconds

N = 32

Substituting these values in the equation 2, we get the speedup factor according to Amdahl’s Law for test case 2

as 22.

 However the speedup factors thus calculated for both the test cases according to Amdahl’s Law gives

far too optimistic values. This is because it ignores the overhead incurred due to parallelizing the code.

 A more realistic calculation of speedup would be to include the parallelizing overhead too [8]. So the

following terms are also included in calculating the speedup:

 Tis: The (average) additional serial time spent doing things like inter thread communications, thread creation

and setup, and so forth in all parallelized tasks. This time can depend on N, the number of processors, in a

variety of ways, but the simplest assumption is that each thread has to expend this much time, one after the

other, so that the total additional serial time is N* Tis. In our application the overhead time taken for thread

creation, setting up of initial environment and inputs for threads and thread synchronization takes 9.8

seconds for test case 1 and 38 seconds for test case 2.

 Tip: The (average) additional time spent by each processor doing just the setup and work that it does in

parallel. This may well include the idle time, which is often important enough to be accounted for separately.

This time amounts to 2 usecs per thread.

By considering the above factors, the expected speed up can be calculated as:

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑇𝑠 + 𝑇𝑝

𝑇𝑠 + 𝑁 ∗ 𝑇𝑖𝑠 +
𝑇𝑝
𝑁
 + 𝑇𝑖𝑝

 3

For test case 1, substituting the above two overhead times in equation 3, we get the calculated speedup as

13. The real maximum speedup achieved for test case 1 at 7 threads per processor using equation 1 and Table 1

is 8.

For test case 2, substituting the above two overhead times in equation 3, we get the calculated speedup as

12. The real maximum speedup achieved for test case 2 at 7 threads per processor using equation 1 and Table 2

is 7.

It is observed from both the test cases that the actual maximum speedup achieved is close to but less than

the calculated speedup. This can be attributed to the fact that some time is also spent in merging the outputs of

threads. Some variable delays also happen due to thread scheduling which is dependent on the operating system

and beyond the control of the application. Hence the achieved speedup is in accordance to the expected values

for our application.

C. CPU Performance Analysis

 CPU performance was analysed on an Intel Xeon 4 CPU single core server with Hyper-Threading

enabled. Figure 4 shows the CPU utilization by the sequential application. It is observed that only one CPU

shows maximum performance at one instance of time. The other processing nodes are mostly idle. The memory

utilization is also very less as only 174 MB of 4GB is used.

Exploiting Multi Core Architectures for Process Speed Up

14

Fig 4: CPU & Memory utilization - sequential processing

Figure 5 shows the performance of multithreaded application on the same server.

Fig 5: CPU & Memory utilization - multithreaded processing

 As the application starts and threads are created, all the CPUs show peak (100%) performance. In this

application 7 threads are running in parallel. This indicates that all the cores are being used to their maximum

performance. The memory profile also shows that 1.9 GB of 4GB available memory is being used. Thus the

multithreaded application efficiently utilizes all the available resources of processing nodes and memory to

speed up the data processing.

VIII. CONCLUSION
 The speedup achieved for test case 1 with raw data size of 6.3 GB is 8, the theoretical calculated

speedup factor being 13. For test case 2 with 9.6 GB of raw data, the achieved speed up factor is 7 and the

theoretical calculated speedup factor was 12.The achieved speedup in both the test cases is very close to the

expected values taking into account some variable delays in threading overheads when 7 threads are assigned to

each core of a 4 CPU 8 core server.

 The speed up achieved has resulted in considerable reduction of Turn Around Time for data products

generation thereby realizing the required delivery timelines. The application design is generic and can be easily

configured for new applications for future IRS satellite missions thereby reducing the implementation and

testing times.

Exploiting Multi Core Architectures for Process Speed Up

15

ACKNOWLEDGEMENTS
The authors extend their sincere gratitude to Deputy Director, SDAPSA and Director, NRSC for their

constant encouragement and support.

REFERENCES
[1]. Bryan Schauer, “Multicore Processors – A Necessity”, ProQuest Discovery Guides, September 2008,

http://www.csa.com/discoveryguides/multicore/review.pdf

[2]. M. Aater Suleman, Moinuddin K Qureshi , Onur Mutlu, , Yale N. Patt, “Accelerating Critical Section

Execution with Asymmetric Multi-Core Architectures”, January 2010

[3]. Bradford Nichols, Dick Buttlar, and Jackie Farrell, “Pthreads Programming”, First Edition, O'Reilly &

Associates, September 1996

[4]. Ian J. Ghent ,“Faster results by multi-threading data steps”, SAS Global Forum, 2010,

http://support.sas.com/resources/papers/proceedings10/109-2010.pdf

[5]. Richard T. Kouzes, Gordon A. Anderson, Stephen T. Elbert, Ian Gorton, and Deborah K. Gracio, “The

Changing Paradigm of Data-Intensive Computing”, IEEE Computer Society, 2009

[6]. D. Butenhof, “Programming With POSIX Threads”, Addison-Wesley, 1997

[7]. Andrew Binstock, “Threading Models for High-Performance Computing: Pthreads or OpenMP?”,

October 2010, http://software.intel.com/en-us/articles/threading-models-for-high-performance-

computing-pthreads-or-openmp

[8]. Robert G. Brown, “Maximizing Beowulf Performance”, USENIX Association Proceedings of the 4th

Annual Linux Showcase & Conference, October 2000,

https://www.usenix.org/legacy/publications/library/proceedings/

als00/2000papers/papers/full_papers/brownrobert/brownrobert.pdf

