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Abstract:- This paper presents a saliency-based video object extraction (VOE) framework. The proposed 

framework aims to automatically extract foreground objects of interest without any user interaction or the use of 

any training data (i.e., not limited to any particular type of object). To separate foreground and background 

regions within and across video frames, the proposed method utilizes visual and motion saliency information 

extracted from the input video. A conditional random field is applied to effectively combine the saliency 

induced features, which allows us to deal with unknown pose and scale variations of the foreground object (and 

its articulated parts). Based on the ability to preserve both spatial continuity and temporal consistency in the 

proposed VOE framework, experiments on a variety of videos verify that our method is able to produce 

quantitatively and qualitatively satisfactory VOE results. 
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I. INTRODUCTION 
 At a Glance, human can easily determine the subject of interest in a video, even though that subject is 

presented in an unknown or cluttered background or even has never been seen before. With the complex 

cognitive capabilities exhibited by human brains, this process can be interpreted as simultaneous extraction of 

both foreground and background information from a video. Many researchers have been working toward closing 

the gap between human and computer vision. However, without any prior knowledge on the subject of interest 

or training data, it is still very challenging for computer vision algorithms to automatically extract the 

foreground object of interest in a video. As a result, if one needs to design an algorithm to automatically extract 

the foreground objects from a video, several tasks need to be addressed.  1) Unknown object category and 

unknown number of the object instances in a video. 2) Complex or unexpected motion of foreground objects due 

to articulated parts or arbitrary poses. 3) Ambiguous appearance between foreground and background regions 

due to similar color, low contrast, insufficient lighting, etc. conditions. In practice, it is infeasible to manipulate 

all possible foreground object or background models beforehand. However, if one can extract representative 

information from either foreground or background (or both) regions from a video, the extracted information can 

be utilized to distinguish between foreground and background regions, and thus the task of foreground object 

extraction can be addressed. As discussed later in Section II, most of the prior works either consider a fixed 

background or assume that the background exhibits dominant motion across video frames. These assumptions 

might not be practical for real world applications, since they cannot generalize well to videos captured by freely 

moving cameras with arbitrary movements. 

  In this paper, we propose a robust video object extraction (VOE) framework, which utilizes 

both visual and motion saliency information across video frames. The observed saliency information allows us 

to infer several visual and motion cues for learning foreground and background models, and a conditional 

random field (CRF) is applied to automatically determines the label (foreground or background) of each pixel 

based on the observed models. With the ability to preserve both spatial and temporal consistency, our VOE 

framework exhibits promising results on a variety of videos, and produces quantitatively and qualitatively 

satisfactory performance. The remainder of this paper is organized as follows. Section II reviews recent works 

on video object extraction and highlights the contributions of our method. Details of our proposed VOE 

framework are presented in Sections III and IV. Section V shows our empirical results on several types of video 

data, and both qualitative and quantitative results are While we focus on VOE problems for single concept 

videos (i.e., videos which have only one object category of interest presented), our proposed method is able to 

deal with multiple object instances (of the same type) with pose, scale, etc. variations.  

 The remainder of this paper is organized as follows. Section II reviews recent works on video object 

extraction and highlights the contributions of our method. Details of our proposed VOE framework are 

presented in Sections III and IV. Section V shows our empirical results on several types of video data, and both 
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qualitative and quantitative results are presented to support the effectiveness and robustness of our method. 

Finally, Section VI concludes this paper. 

 

II. RELATED WORK 
 In general, one can address VOE problems using supervised or unsupervised approaches. Supervised 

methods require prior knowledge on the subject of interest and need to collect training data beforehand for 

designing the associated VOE algorithms. For example, Wu and Nevatia [1] and Lin and Davis [2] both 

decomposed an object shape model in a hierarchical way to train object part detectors, and these detectors are 

used to describe all possible configurations of the object of interest (e.g. pedestrians). Another type of 

supervised methods require user interaction for annotating candidate foreground regions. For example, image 

segmentation algorithms proposed in [3], [4] focused on an interactive scheme and required users to manually 

provide the ground truth label information. For videos captured by a monocular camera, methods such as 

Criminisi et al., Yin et al. [5], [6] applied a conditional random field (CRF) maximizing a joint probability of 

color, motion, etc. models to predict the label of each image pixel. Although the color features can be 

automatically determined from the input video, these methods still need the user to train object detectors for 

extracting shape or motion features. Recently, researchers proposed to use some preliminary strokes to manually 

select the foreground and background regions, and they utilized such information to train local classifiers to 

detect the foreground objects [7], [8]. While these works produce promising results, it might not be practical for 

users to manually annotate a large amount of video data. 

 On the other hand, unsupervised approaches do not train any specific object detectors or classifiers in 

advance. For videos captured by a static camera, extraction of foreground objects can be treated as a background 

subtraction problem. In other words, foreground objects can be detected simply by subtracting the current frame 

from a video sequence [9], [10]. However, if the background is consistently changing or is occluded by 

foreground objects, background modeling becomes a very challenging task. For such cases, researchers typically 

aim at learning the background model from the input video, and the foreground objects are considered as 

outliers to be detected. For example, an autoregression moving average model (ARMA) that estimates the 

intrinsic appearance of dynamic textures and regions was proposed in [11], and it particularly dealt with 

scenarios in which the background consists of natural scenes like sea waves or trees. Sun et al. [12] utilized 

color gradients of the background to determine the boundaries of the foreground objects. Some unsupervised 

approaches aim at observing features associated with the foreground object for VOE. For example, graph-based 

methods [13], [14] identify the foreground object regions by minimizing the cost between adjacent hidden 

nodes/pixels in terms of color, motion, etc. information. More specifically, one can segment the foreground 

object by dividing a graph into disjoint parts whose total energy is minimized without using any training data. 

While impressive results were reported in [13], [14], these approaches typically assume that the 

background/camera motion is dominant across video frames. For general videos captured by freely moving 

cameras, these methods might not generalize well (as we verify later in experiments). Different from graph-

based methods, Leordeanu and Collins [15] proposed to observe the co-occurrences of object features to identify 

the foreground objects in an unsupervised setting. Although promising results under pose, scale, occlusion, etc. 

variations were reported, their approach was only able to deal with rigid objects (like cars). 

 Since Itti et al. [16] first derived the visual saliency of a single image, numerous works have been 

proposed to extract the saliency information of images for the tasks of compression, classification, or 

segmentation. For example, Harding and Robertson [17] demonstrate that the visual saliency can be utilized to 

improve image compression ratio by combining SURF features and task-dependent prior knowledge. Unlike 

compression or classification problems which might utilize task or object category information for deriving the 

associated saliency, general saliency detection or image segmentation tasks are solved in an unsupervised 

setting. For example, based on spectrum analysis, Hou and Zhang [18] utilized the spectral residual as saliency 

information, while Guo et al. [19] advanced the phase part of the spectrum together with Quaternion Fourier 

Transform for saliency detection. Liu et al. [20] considered contrast information and color histogram of different  

image regions in multiple scales to detect local and global image saliency. Achanta and Süsstrunk [21] omputed 

the saliency by taking symmetric surrounding pixels into consideration and averaging the color differences 

between pixels within each region. Goferman et al. [22] applied multi-scale patches and calculated both color 

differences and locations between different patches. Zhai and Shah [23] constructed spatial and temporal 

saliency maps by using a spatiotemporal attention model. Based on local image contrast, Ma and Zhang [24] 

determined the salient regions by fuzzy growing which extracts regions or objects of interest when forming the 

saliency map. Recently, Wang et al. [25] proposed a biological inspired approached and derived visual saliency 

based on site entropy rate for saliency detection. Nevertheless, finding visual saliency in images or video frames 

would provide promising results and infer the region of the foreground objects. However, since real-world 

videos might encounter low contrast or insufficient lighting, etc. problems, one might not be able to obtain 
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desirable visual saliency maps for identifying candidate foreground objects. As a result, one cannot simply apply  

visual saliency methods for segmenting foreground objects in real world videos. 

 

Our Contributions: In this paper, we aim at automatically extracting foreground objects in videos which are 

captured by freely moving cameras. Instead of assuming that the background motion is dominant and different 

from that of the foreground as [13], [14] did, we relax this assumption and allow foreground objects to be 

presented in freely moving scenes. We advance both visual and motion saliency information across video 

frames, and a CRF model is utilized for integrating the associated features for VOE (i.e., visual saliency, shape, 

foreground/background color models, and spatial/temporal energy terms). From our quantitative and qualitative 

experiments, we verify that our VOE performance exhibits spatial consistency and temporal continuity, and our 

method is shown to outperform state-of the- art unsupervised VOE approaches. It is worth noting that, our   

proposed VOE framework is an unsupervised approach, which does not require the prior knowledge (i.e., 

training data) of the object of interest nor the user interaction for any annotation. 

 

III.  AUTOMATIC OBJECT MODELLING AND EXTRACTION 
 Most existing unsupervised VOE approaches assume the foreground objects as outliers in terms of the 

observed motion information, so that the induced appearance, color, etc. features are utilized for distinguishing 

between foreground and background regions. However, these methods cannot generalize well to videos captured 

by freely moving cameras as discussed earlier. In this work, we propose a saliency-based VOE framework 

which learns saliency information in both spatial (visual) and temporal (motion) domains. By advancing 

conditional  

random fields (CRF), the integration of the resulting features can automatically identify the foreground object 

without the need to treat either foreground or background as outliers. Fig. 1 shows the proposed VOE 

framework, and we now detail each step in the following subsections.  

 

A. Determination of Visual Saliency: To extract visual saliency of each frame, we perform image segmentation 

on each video frame and extract color and contrast information. In our work, we advance Turbopixels proposed 

by [26] for segmentation, and the resulting image segments (superpixels) are applied to perform saliency  

detection. The use of Turbopixels allows us to produce edgepreserving superpixels with similar sizes, which 

would achieve improved visual saliency results as verified later. For the kth superpixel rk , we calculate its 

saliency score S(rk ) as follows: 

 
where Ds is the Euclidean distance between the centroid of rk and that of its surrounding superpixels ri , while 

σs controls the width of the kernel. The parameter ω(ri ) is the weight of the neighbor superpixel ri , which is 

proportional to the number of pixels in ri . The last term Dr (rk , ri ) measures the color difference between rk 

and ri , which is also in terms of Euclidean distance. we consider the pixel i as a salient point if its saliency score 

satisfies S(i) > 0.8 ∗ max(S), and the collection of the resulting salient pixels will be considered as a salient 

point set. Since image pixels which are closer to this salient point set should be visually more significant than 

those which are farther away, we further refine the saliency ˆS (i ) for each pixel i as follows:  

 
where S(i ) is the original saliency score derived by (1), and dist(i ) measures the nearest Euclidian distance to 

the salient point set. We note that distmax in (2) is determined as the maximum distance from a pixel of interest 

to its nearest salient point within an image, thus it is an image-dependent constant. An example of visual 

saliency calculation is shown in Fig. 2. 

 
Fig. 2. Example of visual saliency calculation. 
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(a) Original video frame. (b) Visual saliency of (a) derived by (1). (c) Visual saliency of (a) refined by (2). 

 

B. Extraction of Motion-Induced Cues: 1) Determination of Motion Saliency: We now discuss how we 

determine the motion saliency, and how we extract the associated cues for VOE purposes. Unlike prior works 

which assume that either foreground or background exhibits dominant motion, our proposed framework aims at 

extracting motion salient regions based on the retrieved optical flow information. To detect each moving part 

and its corresponding pixels, we perform dense optical-flow forward and backward propagation[28] at each 

frame of a video. A moving pixel qt at frame t is determined by  

 
Where

^ 
q denotes the pixel pair detected by forward or backward optical flow propagation. We do not ignore the 

frames which result in a large number of moving pixels at this stage as[13][14] did,  and thus our setting is more 

practical for real-world videos captured by freely-moving cameras. After determining the moving regions, we 

propose to derive the saliency scores for each pixel in terms of the associated optical flow information. Inspired 

by visual saliency approaches like [27], we apply our proposed algorithms in (1) and (2) on the derived optical 

flow results to calculate the motion saliency M(i, t) for each pixel i at frame t, and the saliency score at each 

frame is normalized to the range of [0, 1] (see Fig. 3 for example). It is worth noting that, when the foreground 

object exhibits significant movements (compared to background), its motion will be easily captured by optical 

flow and thus the corresponding motion salient regions can be easily extracted. On the other hand, if the camera 

is moving and thus results in remarkable background movements, the proposed motion saliency method will still 

be able to identify motion salient regions (associated with the foreground object). Consider Fig. 1, we see that 

the motion saliency derived from the optical flow has a better representative capability in describing the 

foreground regions than the direct use of the optical flow does. Another example is shown in Fig. 3, in which we 

observe that the foreground object (the surfer) is significantly more salient than the moving background in terms 

of motion. From the above discussions, we consider motion saliency as important and supplementary 

information for identifying foreground objects. 

 

   
(a)                                                                                           (b) 

Fig. 3. Motion saliency calculated for Fig. 2. 
 

Fig. 1 illustrates the overview of our proposed VOE framework. 
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Fig 1. Block Diagram of Proposed System 

 

2) Learning of Shape Cues: Although motion saliency allows us to capture motion salient regions within and 

across video frames, those regions might only correspond to moving parts of the foreground object within some 

time interval. If we simply assume the foreground should be near the high motion saliency region as method in 

[13] did, we cannot easily identify the entire foreground object. Since it is typically observed that each moving 

part of a foreground object forms a complete sampling of the entire foreground object[5][6][13][14], we advance 

part-based shape information induced by motion cues for characterizing the foreground object. To describe the 

motion salient regions, we convert the motion saliency image into a binary output and extract the shape 

information from the motion salient regions. More precisely, we first binarize the aforementioned motion 

saliency M(i, t) into     Mask(i, t) using a threshold of 0.25. We divide each video frame into disjoint 8 * 8 pixel 

patches. For each image patch, if more than 30% of its pixels are with high motion saliency (i.e., pixel value of 1 

in the binarized output), we compute the histogram of oriented gradients (HOG) descriptors with       4 * 4 = 16 

grids for representing its shape information. To capture scale invariant shape information, we further downgrade 

the resolution of each frame and repeat the above process. We choose the lowest resolution of the scaled image 

as a quarter of that of the original one. We note that a similar setting for scale invariance has also been applied in 

[29] when extracting the HOG descriptors. The use of sparse representation has been shown to be very effective 

in many computer vision tasks [30], we learn an over-complete codebook and determine the associated sparse 

representation of each HOG. Now, for a total of N HOG descriptors calculated for the above motion-salient 

patches {hn, n = 1, 2, . . . , N} in a p-dimensional space, we construct an over-complete dictionary Dp ?K which 

includes K basis vectors, and we determine the corresponding sparse coefficient αn of each HOG descriptor. 

Therefore, the sparse coding problem can be formulated as 

 
where λ balances the sparsity of αn and the l2-norm reconstruction error. To alleviate the possible presence of 

background in each codeword k, we combine the binarized masks of the top 15 patches using the corresponding 

weights αn to obtain the map Mk. As a result, the moving pixels within each map (induced by motion saliency) 
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has non-zero pixel values, and the remaining parts of that patch are considered as static background and thus are 

zeroes.  

After obtaining the dictionary and the masks to represent the shape of foreground object, we use them to encode 

all image patches at each frame. This is to recover non-moving regions of the foreground object which does not 

have significant motion and thus cannot be detected by motion cues. For each image patch, we derive its sparse 

coefficient vector α, and each entry of this vector indicates the contribution of each shape codeword. 

Correspondingly, we use the associated masks and their weight coefficients to calculate the final mask for each 

image patch. Finally, the  reconstructed image at frame t using the above maps Mk can be denoted as foreground 

shape likelihood X^i
S 
t , which is calculated as follows: 

 
where αn,k is the weight for the nth patch using the kth codeword. Fig. 4 shows an example of the reconstruction 

of a video frame using the motion-induced shape information of the foreground object. 

        
(a)                                                                         (b) 

Fig 4. Shape likelihood reconstructed by sparse shape representation. 

 

(a) Original frame. (b) Shape likelihood. 

 

3) Learning of Color Cues: Besides the motion-induced shape information, we also extract both foreground and 

background color information for improved VOE performance. According to the observation and the 

assumption that each moving part of the foreground object forms a complete sampling of itself, we cannot 

construct foreground or background color models simply based on visual or motion saliency detection results at 

each individual frame; otherwise, foreground object regions which are not salient in terms of visual or motion 

appearance will be considered as background, and the resulting color models will not be of sufficient 

discriminating capability. In our work, we utilize the shape likelihood obtained from the previous step, and we 

threshold this likelihood by 0.5 to determine the candidate foreground (FSshape) and background (BSshape) regions. 

In other words, we consider color information of pixels in FSshape for calculating the foreground color GMM, 

and those in BSshape for deriving the background color GMM. 

 Once these candidate foreground and background regions are determined, we use Gaussian mixture 

models (GMM) GC f and GCb to model the RGB distributions for each model. The parameters of GMM such as 

mean vectors and covariance matrices are determined by performing an expectation-maximization (EM) 

algorithm. Finally, we integrate both foreground and background color models with visual saliency and shape 

likelihood into a unified framework for VOE. 

 

IV. CONDITION RANDOM FIELD FOR VOE 
A. Feature Fusion via CRF: Utilizing an undirected graph, conditional random field (CRF) [32] is a powerful 

technique to estimate the structural information (e.g. class label) of a set of variables with the associated  

observations. For video foreground object segmentation,  CRF has been applied to predict the label of each 

observed pixel in an image I [13], [14]. As illustrated in Fig. 6, pixel i in a video frame is associated with 

observation zi , while the hidden node Fi indicates its corresponding label (i.e. foreground or background). In 

this framework, the label Fi is calculated by the observation zi , while the spatial coherence between this output 
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and neighboring observations z j and labels Fj are simultaneously taken into consideration. Therefore, predicting 

the label of an observation node is equivalent to maximizing the following posterior probability function 

 

 
where ψi is the unary term which infers the likelihood of Fi with observation zi . ψi, j is the pairwise term   

describing the relationship between neighboring pixels zi and z j, and that between their predicted output labels 

Fi and Fj . Note that the observation z can be represented by a particular feature, or a combination of multiple 

types of features (as our proposed framework does). To solve a CRF optimization problem, one can convert the 

above problem into an energy minimization task, and the object energy function E of (6) can be derived as 

 

 
In our proposed VOE framework, we define the shape energy function ES in terms of shape  likelihood  X

^
 

S
 t 

(derived by (5)) as one of the unary terms 

 
 

In addition to shape information, we need incorporate visual saliency and color cues into the introduced CRF 

framework. we derive foreground and background color models for VOE, and thus the unary term EC 

describing color information is defined as follows: 

 
Note that the foreground and background color GMM models G

C
 f and G

C
b are utilized to derive the associated 

energy terms E
C
F and E

C
B, which are calculated as 

 
As for the visual saliency cue at frame t, we convert the visual saliency score ˆSt derived in (2) into the following 

energy term E
V
: 

 
We note that in the above equations, parameters ws , wc, and wv are the weights for shape, color, and visual 

saliency cues, respectively. These weights control the contributions of the associated energy terms of the CRF 

model for performing VOE. It is also worth noting that, Liu and Gleicher[13]  only considers the construction of 

foreground color models for VOE. As verified by[14], it can be concluded that the disregard of background 

color models would limit the performance of VOE, since the only use of foreground color model might not be 

sufficient for distinguishing between foreground and background regions. In the proposed VOE framework, we 

now utilize multiple types of visual and motion salient features for VOE, and our experiments will confirm the 

effectiveness and robustness of our approach on a variety of real-world videos. 

 

Preserving Spatio-Temporal Consistency: In the same shot of a video, an object of interest can be considered as 

a compact space-time volume, which exhibits smooth changes in location, scale, and motion across frames. 

Therefore, how to preserve spatial and temporal consistency within the extracted foreground object regions 

across video frames is a major obstacle for VOE. Since there is no guarantee that combining multiple motion-
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induced features would address the above problem, we need to enforce additional constraints in the CRF model 

in order to achieve this goal. 

1)Spatial Continuity for VOE: When applying a pixel-level prediction process for VOE (like ours and some 

prior VOE methods do), the spatial structure of the extracted foreground region is typically not considered 

during the VOE process. This is because that the prediction made for one pixel is not related to those for its 

neighboring ones. To maintain the spatial consistency for the extracted foreground object, we add a pair wise 

term in our CRF framework. The introduced pairwise term Ei, j is defined as 

 
 

 Note that β is set as the averaged pixel color difference of all pairs of neighboring pixels. In (11), λ1 is 

a data-independent Ising prior to smoothen the predicted labels, and λ2 is to relax the tendency of smoothness if 

color observations zi and z j form an edge (i.e. when _zi − z j _ is large). This pair wise term is able to produce 

coherent labeling results even under low contrast or blurring effects and this will be verified later in Section V. 

 

2) Temporal Consistency for VOE: Although we exploit both visual and motion saliency information for 

determining the foreground object, the motion-induced features such as shape and foreground/background color 

GMM models might not be able to well describe the changes of foreground objects across videos due to issues 

such as motion blur, compression loss, or noise/artifacts presented in video frames. To alleviate this concern, we 

choose to propagate the foreground/background shape likelihood and CRF prediction outputs across video 

frames for preserving temporal continuity in our VOE results. To be more precise, when constructing the 

foreground and background color GMM models, the corresponding pixel sets FS and BS will not only be 

produced by the shape likelihood FSshape and BSshape at the current frame, those at the previous frame (including 

the CRF prediction outputs ˆFforeground and ˆFbackground) will be considered to update FS and BS as well. In other 

words, we update foreground and background pixel sets FS and BS at frame t + 1 by 

 
where ˆFforeground(t) indicates the pixels at frame t to be predicted as foreground, and FSshape(t) is the set of pixels 

whose shape likelihood is above 0.5 as described in Section III.B3. Similar remarks apply for ˆFbackground(t) and 

BSshape(t).  

Finally, by integrating (8), (9), (10), and (11), plus the introduced terms for preserving spatial and temporal  

information, the objective energy function (7) can be updated as 

 

 
To minimize, one can apply graph-based energy minimization techniques such as max-flow/min-cut algorithms. 

When the optimization process is complete, the labeling function output F would indicate the class label 

(foreground or background) of each observed pixel at each frame, and thus the VOE problem is solved 

accordingly. 

 

V. EXPERIMENTAL RESULTS 

 In this section, we conduct experiments on a variety of videos. We first verify the integration of 

multiple types of features for VOE, and show that it outperforms the use of a particular type of feature. We also 

compare our derived saliency maps and segmentation results to those produced by other saliency based or state-

of-the-art supervised or unsupervised VOE methods. Both qualitative and quantitative results will be presented 

to support the effectiveness and robustness of our proposed method. 
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A.Data Sets and Parameters: We consider eight different video sequences from three different datasets ( [33]– 

[35]) in our experiments. Five out of the eight videos (Girl, Parachute, Penguin, Fox, Redbird) are selected from 

[33] and [34]. To quantitative evaluate the VOE performance, we use the ground truth provided with the original 

data (i.e., label information at the pixel level) except for the Penguin sequence. This is because that the ground 

truth information for the Penguin sequence (provided by [33]) is designed for object tracking in a weakly 

supervised setting, in which only one penguin is manually annotated by the original user at each frame. As 

mentioned in [36]), this might not be preferable since all the penguins should be considered as foreground 

objects. Therefore, we manually label the ground truth for that sequence. We also note that, videos in [35] do not 

contain any foreground or background information, and thus we also manually label their ground-truth 

information. It is worth noting that, both Penguin and Beach sequences are used to demonstrate that our 

proposed method is able to handle videos with multiple object instances (i.e., one type of foreground objects but 

multiple instances are presented). To learn the CRF model, we set λ1 : λ2 ≈ 1:5 for the pairwise term. As for 

different energy unary terms, we have two sets of parameter: wv = 2ws = 2wc = 0.5 and wv = ws = wc = 0.33 for 

weighting visual saliency, shape, and color, respectively. We select the better results for our evaluation. To 

construct the foreground and background color models with GMM, we consider the number of Gaussian 

mixtures as 10 for both cases. 

B. Integration of Multiple Motion-Induced Features for VOE: We first verify the effectiveness of fusing 

multiple types of features selected in our proposed framework. As shown in Fig. 1 and discussed in Section III, 

we consider visual saliency together with two motion-induced cues (i.e., shape and color) in a unified CRF 

model for predicting the label information of each pixel. To confirm that it is necessary to combine the features 

considered, Fig. 5 shows example video frames of three videos (Beach, Girl, Penguin) and their VOE results 

using single or multiple types of features (i.e., shape, color, and visual saliency). We note that, for the VOE 

results shown in Fig. 5 using a single type of feature, both pair wise and temporal terms are enforced for the 

corresponding CRF models. In other words, the only difference between those results and that of ours is the use 

of one or multiple unary terms describing the associated features. 

 

Beach 

    
Original                                            E

S
                                    E

C
 

    
E

V                          
                      Proposed 

 

                   Girl 

                    
Original                                         E

S       
                                           E

C
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E

V              
                                    Proposed 

 

               Penguin 

                    
Original                                        E

S       
                                           E

C
 

 

         
 

E
V              

                                    Proposed 

Fig. 5. VOE results using different feature cues (the CRF pair wise term is considered for all cases for fair 

comparisons). 

 

 VOE results using only shape, color, and visual saliency are shown in Fig. 8(a)–(c), respectively, while 

those produced by our approach are shown in Fig. 5(Proposed). For the Beach video (first row in Fig. 5), since 

background motion due to sea waves is easily detected by optical flow, plus the high visual contrast between the 

seashore and foreground objects, the corresponding features are not sufficient to discriminate between the 

foreground and background regions. Although the motion-induced foreground and background color cues share 

a portion of the sea (background), our definition of color energy term in (9) is able to disregard the associated  

 

Common Gaussian components. As a result, only the use of color cues could produce satisfactory results. For 

the Girl video shown in the second row of Fig. 5, both foreground and background exhibit remarkable motion, 

while the visual  contrast between them is not significant. As a result, the use of any single type of feature was 

not able to achieve proper segmentation results. Finally, for the Penguin video shown in the last row in Fig. 8, 

the use of visual saliency was not able to identify the body parts of the penguins, while shape and color cues 

extracted foreground objects with missing parts. Nevertheless, our proposed framework integrating all three 

types of features can be observed to achieve the most satisfactory VOE results for all three videos, as shown in 

the last column of Fig. 5. 

 

C. Comparisons With Saliency-Based Approaches: We now compare our method with state-of-the-art visual  

saliency detection approaches [20]–[23], [27]. In particular, we consider CA (context-aware) proposed by 

Goferman et al. [22], LD (learning to detect) proposed by Liu et al. [20], ST (spatio-temporal cues) of Zhai and 

Shah [23], MSSS (maximum symmetric surround saliency) of Achanta and Süsstrunk [21], HC (histogram-

based contrast) and RC (region-based contrast) proposed by Cheng et al. [27]. From the visual saliency results 

shown in Fig. 6, it can be observed that our approach was able to extract visual salient regions, even for videos 

with low visual contrast (e.g., Girl and Penguin). Later we will verify the use of our derived visual saliency 

along with motion-induced cues would produce promising VOE results. 

 

 

 

 

 

 



Automatic Foreground object detection using Visual and Motion Saliency 

18 

COMPARISONS OF MAXIMUM F-MEASURE SCORES FOR DIFFERENT VISUAL SALIENCY 

DETECTION APPROACHES 

Methods CA LD ST MSSS HC RC PROPOSED 

METHOD 

F-measure 0.9100% 0.8667% 0.6222% 0.7839% 0.7032% 0.8067% 0.8617% 

 

     Table I 

 In order to quantitatively compare the above results, we subsample the number of video frames for each 

sequence by a factor of 10 and perform quantitative evaluation. While one could use precision-recall curves to 

evaluate the performance of each method, the goal of this work is to utilize the retrieved visual saliency 

information for VOE. Therefore, we choose to provide the maximum F-measure scores (i.e., 2 · (Precision · 

Recall/Precision + Recall)) produced by different methods, as listed in Table I.  

 

 From the results shown in Table I, we see that our approach did not produce the highest F-measure 

scores in terms of visual saliency detection, since both CA [22] and LD [20] performed slightly better than ours. 

As pointed out in [27], both CA and LD tend to produce higher saliency values along object edges due to the use 

of local contrast information. However, if the scale of the foreground object is large, high visual saliency along 

object edges will not be able to provide sufficient visual cues for VOE. In [27], RC has been shown to exhibit 

better capabilities than CA/LD on  benchmark datasets for visual saliency detection. Moreover, both CA and LD 

are computationally more expensive than RC and ours due to the use of multi-scale patches for feature 

extraction/selection. Based on the above quantitative and qualitative evaluations, the use of our proposed visual 

saliency detection algorithm for VOE can be verified. 

 

 
Fig. 6. Selected video frames and their visual saliency results produced by different methods. 
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D. Comparison With Unsupervised VOE Methods: Since our proposed VOE method is able to automatically 

extract foreground objects of interests without any prior knowledge or the need to collect training data in 

advance, we compare our results with those produced by three state-of-the-art unsupervised VOE approaches. 

We first consider the approach of proposed in [13], which also applies CRF to combine color and locality 

features for VOE. However, no background color model and temporal consistency is considered in their 

proposed framework. Since our saliency detection stage is inspired by [27], it is necessary for us to consider the 

approach of [27], followed by performing saliency cut (i.e., an iterative GrabCut technique [27]) to segment the 

detected visually salient regions as foreground objects. We also compare our method to a recently proposed 

unsupervised VOE approach of [36]. Based on the image segmentation and object ranking results of [37], the 

approach of [36] aims at automatically discovering the key image segments across video frames as foreground 

objects using multiple appearance and motion cues. The code for [27] and [36] is available at the websites of the 

authors. 

 

 
Fig. 7. Example VOE results of different unsupervised approaches. (a) Original video frames.  

(b) Our method. (c) Liu and Gleicher [13]. (d) RC+saliency cut [27]. (e) Lee et al. [36]. 
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To quantitatively evaluate the VOE performance, we consider the use of mis-segmentation rates€(S) = |XOR(S, 

GT))|/F · P, where S is the VOE output image, GT is the ground-truth, F is the total number of video frames, and  

P is the total number of pixels in each frame. Table II lists the mis-segmentation rates of different videos for all 

approaches considered. From Table II and Fig. 10, it can be seen that we achieved significantly better or 

comparable VOE results on most of the video sequences. We also verify that our proposed method is able to 

handle videos captured by freely moving camera (e.g., Girl), or with complex background motion (e.g., 

Waterski and Surfer). We also produce satisfactory results on videos with low visual contrast (e.g., Parachute), 

and those with articulated foreground objects presented (e.g., Beach). 

 

TABLE II 

Methods Girl Parachute Penguin Fox Redbird Waters

ki 

Surfer Beach Avg 

Liu and 

Gleicher 

6.31% 5.36% 17.03% 35.32% 28.97% 59.33% 47.5% 14.21% 26.75

% 

RC+ saliency 

cut 

13.42

% 

9.05% 68.28% 1.98% 1.73% 18.86% 17.82% 6.64% 17.22

% 

Lee 3.83% 0.13% 1.66% 99.01% 1.19% 75.90% 13.36% 5.14% 25.03

% 

Proposed 

Method 

2.30% 0.15% 5.01% 2.22% 1.68% 2.24% 0.38% 1.59% 1.95% 

Comparisons of mis-segmentation rates of different unsupervised voe methods. 
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 We note that the method of [13] constructs the foreground color model from video frames with 

dominant  foreground motion detection results, and thus only prefers scenarios where the foreground object 

exhibits  significant motion. Since no background color model is considered in [13], plus the background clutter 

might contribute to motion salient regions, the lack of discrimination ability between candidate foreground and 

background regions makes the method of [13] difficult to achieve satisfactory VOE results. As for the visual- 

saliency based method of [27], it would fail to detect the foreground object which is not visually salient within a 

video frame. We observe that the method of [36] tends to treat foreground as one single object and thus restricts 

the generalization for cases like Beach. This is because the use of objectness for ranking their image 

segmentation results for VOE. We note that this approach had very high mis-segmentation rates for the sequence 

Fox, since it detected the background region as the foreground; as for the sequence Waterski, the VOE results of 

[36] were not as good as those reported in [36] even we direct applied their release code. When comparing the 

averaged mis-segmentation rates in Table II, we also list the result without using these two sequences. Besides 

presenting quantitative VOE results, we also provide qualitative results and comparisons in Fig. 7, and it can be 

seen that our approach generally produced satisfactory results. For the video like Waterski which contains visual 

and motion salient regions for both the foreground object (i.e., water-skier) and  background clutter (e.g., surf), 
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and it will be very difficult for unsupervised VOE methods to properly detect the foreground regions even 

multiple types of visual and motion induced features are considered. Discrimination between such challenging 

foreground and background regions might require one to observe both visual and motion cues over a longer 

period. Or, if the video is with sufficient resolution, one can consider to utilize trajectory information of the 

extracted local interest points for determining the candidate foreground regions. In such cases, one can expect 

improved VOE results. 

 

 We finally comment on the computation time of our proposed method. When applying our approach for 

a video frame with 320   240 pixels (implemented by MATLAB), it takes about 5 s, 1 min, and 20 s for 

computing optical flow, visual/motion saliency, and deriving the shape likelihood, respectively. About another 1 

s is required for inducing the foreground/background color GMM models and predicting pixel labels using CRF. 

While it is possible to accelerate the implementation by C/C++ for most of the above procedures, calculation of 

optical flow is still computationally expensive even using GPU. Since the goal of this paper is to automatically 

extract the foreground objects without using training data or user interaction, real-time processing will be among 

future research directions. All unsupervised VOE approaches considered in this paper (including ours) are 

performed offline. 

 

Maximum F-Measure Scores For Different Visual Saliency Detection Approaches 

Methods LD ST MSSS HC RC PROPOSED 

METHOD 

F-measure 0.8667% 0.6222% 0.7839% 0.7032% 0.8067% 0.8617% 
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VI. CONCLUSION 
 In this paper, we proposed an automatic VOE approach which utilizes multiple motion and visual 

saliency induced features, such as shape, foreground/background color models, and visual saliency, to extract 

the foreground objects in videos. We advanced a CRF model to integrate the above features, and additional 

constraints were introduced into our CRF model for preserving both spatial continuity and temporal consistency 

when performing VOE. Compared with state-of-the-art unsupervised VOE methods, our approach was shown to 

better model the foreground object due to the fusion of multiple types of saliency-induced features. A major 

advantage of our proposed method is that we do not require the prior knowledge of the object of interest (i.e., the 

need to collect training data), nor the interaction from the users during the segmentation progress. Experiments 

on a variety of videos with highly articulated objects or complex background presented verified 

the effectiveness and robustness of our proposed method. 
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