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Abstract:- This paper presents a method for classification of transmission line faults based on Artificial Neural 

Network (ANN).Samples of prefault and postfault three phase currents taken at one end of transmission line are 

used as ANN inputs. Simulation studies have been carried out extensively on two power system models: one in 

which the transmission line is fed from one end and another, in which the transmission line is fed from two 

ends. Different types of faults at different operating conditions have been considered for carrying out simulation 

studies. The simulation results confirm the feasibility of the proposed approach. 
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I. INTRODUCTION 
 For providing the essential continuity of service from generating plants to end users power 

transmission lines are vital links. Transmission line protection is therefore an important task for reliable power 

system operation. The identification of the type of fault and the faulty phase/phases is known as fault 

classification which is an important aspect of transmission line protection. Various fault classification 

techniques have been developed by different researchers from time to time. Some of the important fault 

classification techniques are: (1) wavelet transform based techniques [1]-[4] (2) neural network based 

techniques [5]-[8] (3) fuzzy logic based techniques [9]-[11]. In this paper, an alternative neural network based 

fault classification technique has been proposed. 

 ANN is a mathematical model inspired by biological neural networks. A neural network is an adaptive 

system changing its structure due to learning phase and responds to new events in the most appropriate manner 

on the basis of experiences gained through training. The ability of ANNs to learn complex nonlinear 

input/output relationships have motivated researchers to apply ANNs for solving nonlinear problems related to 

various fields. ANNs have inherent advantages of excellent noise immunity and robustness and hence ANN 

based approaches are less susceptible to changing operating conditions as compared to the conventional 

approaches related to power system engineering. ANNs have been successfully applied to power system 

protection. ANN applications to transmission line protection [7], [12]-[15] include detection and classification 

of faults [5],[6], [12]-[14], [16]-[18] and precise location of faults [5],[8],[12]-[14],[16], [17]. Although amongst 

the various available ANN based algorithms, back propagation (BP)  training algorithm  is the most widely used 

one, it has some deficiencies including slow training and local minimum which make it unsuitable for 

transmission line relaying [12]-[14],[16]. For such cases the radial basis function (RBF) based neural network is 

well suited [5],[12]-[14],[16],[19].  

 A RBF neural network based scheme for classification of transmission line faults is presented in this 

paper.  As many researchers [5],[12],[14],[18]  have successfully carried out fault detection using ANN 

approach, a priori knowledge of accurate fault detection has been taken for granted. The previous researchers 

have generally used both current and voltage samples for fault classification. The proposed fault classification 

scheme is designed to work with only current samples (unfiltered) taken at one  end of  line. Large number of 

fault data has been generated by means of Electromagnetic Transient Program (EMTP). Using the fault data 

generated through EMTP, simulation studies have been carried out by means of MATLAB‟s „Neural Network 

Toolbox‟ [20] taking into account wide variations in fault resistance (RF), fault inception angle (FIA), fault 

location () and load impedance (ZL) for different types of fault.  

 

II.  RADIAL BASIS FUNCTION ANN 
              The architecture of radial basis function neural network (RBFN) with a feed forward structure 

consisting of three layers is shown in Fig.1. An input layer which consists of source nodes, a hidden layer in 

which each neuron computes its output using a radial basis function and an output layer which builds a linear 

weighted sum of hidden neuron output. The hidden nodes are the radial basis function units and the output nodes 

 



Artificial Neural Network Based Fault Classifier for Transmission Line Protection 

92 

are used to combine linearly the outputs of hidden neurons. In the hidden layer, each neuron computes its output 

using a radial basis function. This particular architecture of RBFN directly improves training and performance 

of the network. 

 

 
Fig. 1:  Architecture of RBF neural network. 

 

 Different types of radial basis functions viz. spline, multiquadratic, Gaussian  function can be used but 

the most common is the Gaussian function which has been considered for the proposed application. The RBF 

network requires less computation time for learning and has a more compact topology in comparison to other 

types of  neural network used for pattern classification like back propagation feedforward networks,. Without 

altering the already learned mapping, the Gaussian RBF is found suitable in generalizing a global mapping and 

also in refining local features. To the input xxkk  ,the jjth hidden neuron gives the following output:  

                                       jj (xxkk ) = 

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where jj is the center for the jj
th

 hidden neuron and jj is the spread of the Gaussian function,  denotes the 

Euclidian norm. The output of the ii
th

 node in the output layer is defined by: 

                                                                 fii (XX ) 


Hn

1jj
jj (  XX- jj  ) jj ii        1   ii   nO                              (2) 

Where XX    is the input vector and  jj ii represents the weight from the jj
th

 hidden node to the ii 
th

 output node. 

The performance of a RBF neural network depends on the choice of the values of the centers. Orthogonal least 

squares (OLS) learning procedure [20]-[22] has been used for determining the RBF centers. 

             The OLS procedure can be implemented by introducing an error term e in Equation (2), which can be 

rewritten as  

                                                           ii (XX) 


Hn

1jj
jj ( XX- jj  ) jj ii + e           1   ii  nO                           ( 3) 

where  ii is the desired output of the ii 
th 

output node, and then maximizing the error reduction ratio by 

orthogonal LS principle [5].  

III.   POWER SYSTEM MODELS 
The two power system models: Model I and Model II, which have been considered for the development of the 

fault classification algorithms are shown in Fig. 2 and Fig. 3 respectively [5]. 

 

 
Fig. 2:  Model I: A faulted transmission line fed from one end. 
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Fig. 3:  Model II: A faulted transmission line fed from both ends. 

 

 As can be seen from the figures each model contains a faulted transmission line. In case of Model I, 

power is fed to fault from one source, whereas in case of Model II, power is fed to fault from two sources. In 

each case the fault is associated with a fault resistance and power is fed to fault and load simultaneously. The 

transmission line parameters and other relevant data for Model-I and Model-II are given below: 

 

A.  Model I: Transmission line fed from one end: 

Line length = 100 km , Source voltage (vS) = 400 kV 

Positive sequence line parameters: R = 2.34 , L = 95.10 mH, C = 1.24 F 

Zero sequence line parameters: R = 38.85 , L = 325.08 mH, C = 0.845 F   

Source impedance (ZS):              Positive sequence impedance = (0.45 + j5)  per phase 

                                                    Zero sequence impedance = 1.5 Positive sequence impedance 

Load impedance  (ZL) = 800  per phase with 0.8 p.f. lagging     

 

B.  Model II: Transmission line fed from both ends: 

The parameters of transmission line 1 are same as those considered for transmission line of Model I. The load  

impedance variations are also same as in case of Model I. The parameters of transmission line 2 and other 

parameters are as follows: 

R2 =1.3 R1, L2 =1.3 L1, C2 =C1, where suffixes 1 and 2 refer to transmission line 1 and transmission line 2 

respectively. 

vS2 = 0.95 vS1, where vS1and vS2 are the voltages of source 1 and source 2 

  (phase difference between vS1 and vS2 ) = 20
0  

with vS1 leading
     

Source impedances:     Positive sequence impedance: ZS1 = (0.45 + j5)  per phase,  ZS2 = (0.34 + j4)  per 

phase.     

Zero sequence impedance = 1.5 Positive sequence impedance, for both the sources 

 

IV. THE PROPOSED FAULT CLASSIFIER 
 The proposed ANN based scheme for classification of faults is shown in Fig. 4. In the figure,  F, D and 

G represent the presence of fault, the fault direction and the involvement of ground in the fault. A, B and C are 

the three phases. Simulation studies have been carried out to validate the proposed scheme on two power system 

models: Model I and Model II, for various types of fault considering variations in fault inception angle, fault 

location, fault resistance and load impedance.  

 

 Two separate ANNs, one for ground faults and another for phase faults have been used. Hence, the 

prerequisite of the proposed scheme is that the fault should be detected and also it should be known whether the 

fault involves ground or not. 

 
Fig. 4:  ANN based fault classifier. 
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The various ANNs have been termed as:  

 ANN-1: For classification of faults not involving ground in case of  Model I,  

 ANN-2: For classification of faults involving ground in case of  Model I,  

 ANN-3: For classification of faults not involving ground in case of Model II,    

 ANN-4: For classification of faults involving ground in case of Model II. 

The input data, consisting of  normalized absolute values of three pre-fault and four post-fault samples of each 

of the three phase currents, iA, iB, iC  are presented to each of the two ANNs used for fault classification, in the 

form of multiple input vectors as shown below.  

 

 
This type of batching operation is more efficient than the case when inputs are presented in the form of a single 

vector [23]. 

 

V.   GENERATION OF TRAINING DATA 
 It is necessary to train an ANN based fault classifier with sufficient data for different fault situations. 

But it is not possible to consider, for training, all the cases that are encountered by an ANN based fault 

classifier, therefore it is  necessary to judiciously decide and consider some  representative  fault  situations  and  

to  train  the network with data corresponding to these cases such that the ANN gives correct output for all 

cases. 

 In view of the above, each of the ANNs, required for classification of faults for the power system 

models of Fig. 2 and Fig. 3, has been trained  with  different fault  data. Fault  data  have  been generated for 

fault at 5% of the line length from bus 1 of the power system models: Model I and Model II when the load 

impedance is 500 at 0.8 p. f. lagging. Training sets, for each of the two power system models, have been 

generated through  EMTP  simulations  for  the load  impedance as  mentioned and by varying fault resistance 

and fault inception angle. Fault resistances of 5, 50,100 and 300 and fault inception angles of 45
0
, 135

0
 

and 225
0
 have been considered for training.  

 It is important to select proper values of spread and error goal in designing a RBF neural network. The 

spread determines how wide the radial basis functions are. The spread should be smaller than the maximum 

distance and  larger than the minimum distance between the input vectors [23].  After a number of simulations 

the spreads for the different ANNs have been selected, as indicated below.  

 ANN-1: Spread = 0.7 ,     ANN-2: Spread = 0.6 ,     ANN-3: Spread = 1.0 ,     ANN-4: Spread = 0.9 

Error goal indicates how close the actual output is to the desired one. Lower the error goal, higher is the 

accuracy and vice versa. After a number of simulation studies, it was decided to fix the error goal for all the 

ANNs at 0.01. A comparison of the training times, number of epochs (iterations) required for the networks to 

converge is shown in Table I. Based on this comparison, the ANNs with minimum number of  hidden neurons 

were selected for the proposed fault classifier. The selected values of spread, number of hidden neurons etc. for 

each ANN are highlighted in Table I. The error convergences of the various ANNs during training have been 

shown in Fig.5- Fig.8. 
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Fig. 5.  Error convergence of ANN-1 in training. 

 
 

 
Fig. 6.  Error convergence of ANN-2 in training. 

 

 
Fig. 7 Error convergence of ANN-3 in training 
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Fig. 8.  Error convergence of ANN-4 in training. 

 

After training, each ANN is tested for different types of faults considering wide variations in operating 

conditions such as fault resistance, fault inception angle, fault location and pre-fault load. RF variation of 0-

300,  FIA variation of 0-360
0
,  variation of  0-90% of transmission line length and ZL  variation of 300-

1200 in per phase load with power factor (lagging) variation of 0.7–0.9 have been considered. Tables II and III 

contain the test results for various ANNs, which confirm the feasibility of the proposed ANN based fault 

classification scheme. 

 

VI. COMPARISON WITH SOME OF EXISTING SCHEMES  

 A comparison of some of the existing RBF neural network based fault classification schemes with the 

proposed one has been carried out. The advantages of the proposed scheme are: (a) Range of fault resistance RF 

varies from 0-300  which is high as compared to that proposed by Song et al.,[12]; Dash et al.[14]; Lin et 

al.[16] and Mahanty et al.[5] (b) Zero sequence currents which have been considered by Mahanty et al.[5] has 

been ignored in the proposed scheme. As a result of this, the network size and training time get reduced without 

affecting the accuracy of fault classification (c) Only current inputs are required. 

  

VII. CONCLUSIONS 
 A methodology for classification of transmission line faults based on RBF neural network has been 

presented. The use of RBFNN has been found to be very effective as it can overcome the deficiencies associated 

with BP algorithm. Whereas most of the previous researchers have generally used  both voltage and current 

samples, the proposed fault classification scheme is designed to work with only current samples as inputs. Both 

pre-fault and post-fault samples of three phase currents are considered as inputs in order to be able to distinguish 

between the current waveforms of healthy and faulty phases. Two separate ANNs, one for LG & LLG faults and 

another one for   LL & LLL faults in the proposed scheme have been used, thus making the classification of 

faults easier. The proposed scheme has been validated by considering wide variations in operating conditions 

such as fault location, fault inception angle, fault resistance and load impedance. The simulation results show 

that the proposed scheme is suitable for classification of transmission line faults including the high impedance 

ones. 
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Table I: CONVERGENCE RATES RELATING to DIFFERENT RMS ERRORS and SPREADS 

Network RMS error Spread Number of  
hidden 

neurons 

Iterations 
(epochs) 

Time (sec) 

ANN-1 0.001 0.7 66 66 18.16 

0.01 0.6 45 45  9.907 

0.01 0.7 44 44  9.461 selected 

0.01 0.8 Computation incompatible 

0.01 0.9 44 44  9.615 

0.01 1.0 45 45  8.586 

ANN-2 0.001 0.5 126 126  81.615 

0.01 0.4 93 93  47.71 

0.01 0.5 Computation incompatible 
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0.01 0.6 91 91 45.631 selected 

0.01 0.7 Computation incompatible 

0.01 0.8 98 98 52.43 

ANN-3 0.001 1.0 75 75 21.77 

0.01 0.8 51 51 12.41 

0.01 0.9 50 50 12.15 

0.01 1.0 50 50 11.91 selected 

0.01 1.1 53 53 14.015 

 0.01 1.2 55 55 14.54 

ANN-4 0.001 0.9 141 141 99.446 

0.01 0.7 107 107 60.35 

0.01 0.8 Computation incompatible 

0.01 0.9 101 101 55.07    selected 

 0.01 1.0 Computation incompatible 

 0.01 1.1 103 103 56.51 

 

Table II. TEST RSULTS for MODEL- I. 

Fault type  

 

Fault Conditions ANN Output 

 

 FIA 

( 0 ) 

RF 

() 

ZL 

() 

A                   B                C 

Normal  Condition                            -                  -           - 120045.570 0.0009 0.0037 0.0067 

                

 

 

 

 

 

 

 

 

0.1 0 

110 

0.01 

70 
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250 
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300 
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200 
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 0.9760 
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-0.0218 

0.1189 
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-0.0216 
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1.0002 

 B-C              0.5 90 
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0.9934 

C-A-G 0.5 30 
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100 

20 
80045.570 

120025.840 
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-0.0367 

0.0013 

0.8687 
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0.9 160 
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0.1 0 

110 

0.01 

70 
80045.570 

120045.570 

0.9986 

1.1023 

1.0023 

0.9995 

1.0013 

1.0311 

                 A-B-C 0.5 90 

300 

300 

20 
40036.870 

120025.840 

0.9965 

1.0743 

0.8897 

0.8265 

0.9786 

0.9276 

                           0.9 75 

250 

 

 

20 

200 
30045.570 

120045.570 

0.9932 

0.8865 

0.9421 

0.8789 

0.9887 

0.9765 
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Table III: TEST RSULTS for MODEL II  

 

 

           Fault type  

Fault Condition    ANN 

Output 

 
 FIA 

( 
0 
) 

RF 

() 

ZL 

() 

A                     B                 C 

 Normal      Condition           -                  -           - 80025.84
0 0.0013 -0.0258   0.432 

                     

 

 

 

 

 

 

 

 

  0.1 60 

110 

200 

70 
40036.87

0 

120045.57
0
 

0.0008 

0.1408 

0.9989 

0.8667 

-0.0022 

0.1061 

  B-G                

 

                    

 

                    

 

  

 

 

0.5 

 

0.9 

90 

180 

75 

250 

 

 

 

 

 

300 

5 

20 

200 

40036.87
0 

30045.57
0 

30045.57
0
 

120045.57
0 

 

0.1012 

-0.0008 

-0.0012 

-0.0031 

0.8341 

0.9538 

0.9436 

0.7326       

0.0876 

0.0898 

0.0118 

0.0065 

 

 

0.1 0 

110 

0.01 

70 
80045.57

0
 

120045.57
0 

0.9564 

0.9998 

-0.0021 

-0.0012 

0.9612 

1.01213 

C-A 0.5 30 

180 

100 

5 
80045.57

0
 

30045.57
0 

1.0032 

0.9986 

-0.0032 

-0.0003 

1.0543 

1.0112 

 

 

 

0.9 75 

360 

20 

70 
30045.57

0
 

30025.84
0
 

1.0521 

0.9990 

1.0321 

0.0021 

0.0007 

1.0013 

 0.1 0 

110 

0.01 

70 
80045.57

0 

120045.57
0
 

0.0765 

0.0765 

1.0009 

1.0563 

1.0002 

0.9956 

B-C-G 

 

 

 

 

0.5 30 

180 

100 

5 
80045.57

0 

30045.57
0 

-0.0056 

-0.0432 

1.0987 

0.9943 

0.9765 

0.9765 

 

 

 

 

 

0.9 250 

60 

200 

70 
120045.57

0 

30025.84
0
 

0.0108 

0.0028 

0.7987 

0.9597 

0.7876 

0.9876 

 

 

0.1 60 

340 

200 

50 
40036.87

0
 

30036.87
0
 

0.9456 

1.0075 

1.1006 

1.0021 

0.9731 

1.0398 

A-B-C 0.5 30 

180 

100 

5 
80045.57

0 

30045.57
0
 

1.0321 

0.9989 

0.9786 

1.0043 

0.8234 

1.0532 
 0.9 5 

160 

100 

0.01 
40036.87

0
 

80036.87
0 

0.9954 

1.0223 

1.0223 

0.9998 

 

 

0.8543 

1.0346 

 


