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Abstract:- In this paper, the direct method of stability analysis using energy functions is applied for multi-

machine AC/DC power systems.  The system loads including the terminal characteristics of the DC link are 

represented as constant current type loads, and their effects on the generators at the internal nodes are obtained 

as additional bus power injections using the method of distribution factors, thus avoiding transfer conductance 

terms.  Using the centre of angle formulation, a modified form of the energy-function method is used for the 

swing equations and the DC link dynamical equations to compute the critical clearing time for a given fault.  

Numerical results of critical clearing time for a single and multi-machine system using the energy-function 

method agree well with the step-by-step method. 

 

Index Terms:-  Direct Current Link, Energy Function, External Control Signal. 

 

I. INTRODUCTION 
 Direct methods for analyzing power system stability have been applied successfully so far for pure AC 

systems.  The literature on this topic is vast and was summarized in a survey paper by Fouad in 1975.  Since 

1975, there has been a significant advance in this research area, which has helped to remove the conservative 

nature of the results associated with this method in the past.  Hence, the possibility of using this technique for 

transient security assessment is now quite good. 

 Since DC links are now being introduced for economic and other reasons, there is a need to extend the 

direct method of stability analysis to systems containing such links.  It is well known that the quick response of 

the DC link, as opposed to an AC line combined with an effective control scheme, can enhance transient 

stability.  The degree of transient stability for given fault is either the critical clearing time or the critical energy.  

The application of the direct method of stability analysis to AC/DC systems is not a routine extension of the 

method as applied to AC systems.  Instead, it requires a different approach based on treating the post fault DC 

link dynamics as a parameter variation in the swing equations. A simplified first-order model of the DC link 

controller is proposed, which augments the usual swing equation for the machine. For the multi-machine  

case, the method using distribution factors is proposed to reflect (at the internal nodes) the terminal 

characteristics of the DC link and the system loads as additional power injections.  This eliminates automatically 

the problem of transfer conductances in the swing equations.  The computational algorithm and results for a 

multi-machine system are presented. 

 

II. SYSTEM DESCRIPTION 
A. Multi-Machine AC/DC System 

A 3-machine 9-bus system whose single-line diagram is shown in Fig. 3.1 is considered. For details of 

the AC system date refer to [16].  A DC link is added to the system across Buses 9 and 4.  The following 

parameters are chosen for the DC link: 
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𝐾𝑎 = 1.0 pu/rad per sec, 𝑇𝑑𝑐 = 0.1 sec, 𝑃𝑟𝑒𝑓 = 0.0  

for both prefault and postfault conditions. 𝑃𝑟𝑒𝑓  is assumed to be zero for the sake of convenience. In general, 

𝑃𝑟𝑒𝑓  will have different values in the prefault and postfault states, as in the single-machine case; and AC/DC 

load flow calculations have to be performed for each condition. Maximum 𝑃𝑑𝑐 = −2.0 pu; minimum; 𝑃𝑑𝑐 =

−2.0  pu; 𝑞𝑟 = 0.5.  The external control signal (ECS) is chosen to be the difference between the rotor speeds of 

the generator nearest to the rectifier and inverter terminals, i.e., 𝑢 = 𝜔3 −𝜔1. 

The extension of the method to multi-machine AC/DC systems involves a new method of handling system loads 

and DC link characteristics in the swing equations, as well as the use of the potential energy boundary surface 

method [3, 13] for computing 𝑉𝑐𝑟 . 

 

TABLE I Comparison of  𝒕𝒄𝒓 by Energy-Function method and Actual simulation 

Postfault Loading          𝑡𝑐𝑟  by Energy-     𝑡𝑐𝑟  by Actual  on DC Link                

Function method    simulation                       

Case 1: Line (5, 7)              0.181                     0.18           

Case 2: Line (7, 8)    0.182            0.183 

Case 3: Line (4, 6)    0.56                0.57 

 

B. Representation of the Effect of Loads 

It is well known that the transfer conductances present in the internal bus description using the classical 

model pose a problem in constructing a valid V-function, as well as in computing 𝑡𝑐𝑟 .  These transfer 

conductances are mostly due to the system loads being converted to constant impedances and subsequent 

elimination of the load buses.  In the method proposed here, which also applies to the DC link element, the 

effect of loads is reflected at the internal buses in the form of additional bus power injections. 

          Consider a power system network consisting of n buses and m generators.  The bus admittance 

matrix 𝑌𝐿𝐿  for the transmission network alone, excluding the loads and DC link, is formulated and is thus 

augmented with the network elements corresponding to direct axis reactances of the m machines.  The resulting 

augmented matrix 𝑌𝐵𝑢𝑠   has (n + m) buses altogether, and is represented as 

                                     (1)                                                       

where 𝑌𝐺𝐺 , 𝑌𝐺𝐿 , 𝑌𝐿𝐺 , and 𝑌𝐿𝐿  are submatrices of dimensions (m x m), (m x n), (n x m), and (n x n) respectively. 

The overall network representation is 

                                                       (2)                                                                                   
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where       

         𝐼𝐺
𝑡 =  𝐼𝐺1 , 𝐼𝐺2 , … 𝐼𝐺𝑚  ,  𝐼𝐿

𝑡 =  𝐼𝐿1 , 𝐼𝐿2 … . 𝐼𝐿𝑛   

 

𝐼𝐺  and 𝐼𝐿  are the current injections at the internal nodes of the generators and the transmission network nodes, 

respectively; 𝐸𝐺  and 𝑉𝐿 are the associated voltages.  𝑌𝐵𝑈𝑆  is computed for the faulted and postfault conditions by 

properly taking the corresponding network changes into account.  The method of distribution factors are 

suggested in [15] is now used for reflecting loads at the internal buses. Eliminating 𝑉𝐿 from Eq. (3.2), we get 

 

                𝑉𝐿 = 𝑌𝐿𝐿
−1𝐼𝐿 − 𝑌𝐿𝐿

−1𝑌𝐿𝐺𝐸𝐺                             (3)                                                                                       

and 

                  𝐼𝐺 =  𝑌′ 𝐸𝐺 +  𝐷𝐿 𝐼𝐿                               (4)                                                                                          

where 

                   𝑌′ =  𝑌𝐺𝐺 − 𝑌𝐺𝐿𝑌𝐿𝐿
−1𝑌𝐿𝐺   

 

and the distribution factor matrix for loads is given by 

 

                   𝐷𝐿 = 𝑌𝐺𝐿𝑌𝐿𝐿
−1                                                          (5)                                                                                       

Also, we have 

                                                       (6)                                                                                 

where 𝑃𝐿𝑗  and 𝑄𝐿𝑗  are the active and reactive power components of load at the jth bus.  The additional bus 

power injections at the internal bus of the kth generator (k = 1, 2….m) due to the load at jth bus (j = 1, 2 ….n) is 

obtained as follows 

                                                                                                         
(7) 

 

Where 𝑑𝑘𝑗  is the appropriate (k, j) element of  𝐷𝐿 .  The following assumption is made regarding the load 

characteristics: the complex ratio of voltages  
𝐸𝑘

𝑉𝐿𝑗
    

is assumed to be constant, corresponding to the prefault values.  This is a deviation from the conventional type 

of representation of loads as constant impedances.  Since only active power is of interest in the swing equation, 

we get 

           ∆𝑃𝑘𝐿𝑗 =  𝑎𝑘𝐿𝑗𝑃𝐿𝑗 − 𝑏𝑘𝐿𝑗𝑄𝐿𝑗                        (8)                                                                          

 

The effect of all the loads at the internal bus of the kth generator is then obtained as                    

 
                                                                                       (9)  

C. Representation of the Effect of DC Link 

The effect of DC link is represented in a manner similar to that of the loads.  For simplicity, we assume only one 

DC link to be present.  The analysis however, easily extends to cases of more than one DC link.  In the 𝑌𝐵𝑈𝑆  of 

Eq. (1), all buses except the internal buses of the generators and the bus pair corresponding to the rectifier and 

inverter terminals of the DC link are eliminated.  The reduced network may be represented as 
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                                   (10)                                                                         

where 

            𝐼𝐷
𝑡 =  𝐼𝑟 , 𝐼𝑖 ,  𝑉𝐷

𝑡 =  𝑉𝑟 , 𝑉𝑖  

Subscripts r and I refer to the rectifier and inverter sides, respectively, and 𝑌𝐺𝐺
′ , 𝑌𝐺𝐷 , 𝑌𝐷𝐺 , 𝑌𝐷𝐷  are submatrices of 

dimensions (m x m), (m x 2), (2 x m), and (2 x 2), respectively.  From Eq. (10), we get 

          𝑉𝐷 = 𝑌𝐷𝐷
−1𝐼𝐷 − 𝑌𝐷𝐷

−1𝑌𝐷𝐺𝐸𝐺                                 (11)                                                                              

and          

         𝐼𝐺 =  𝑌′′ 𝐸𝐺 +  𝐷𝐷 𝐼𝐷  

where 

            𝑌′′ =  𝑌𝐺𝐺
′ − 𝑌𝐺𝐷𝑌𝐷𝐷

−1𝑌𝐷𝐺     

and the distribution factor matrix for the DC link is given by 

            𝐷𝐷 = 𝑌𝐺𝐷𝑌𝐷𝐷
−1                                            (12) 

Now, we represent the effect of the DC link currents 𝐼𝐷  as additional bus power injections at the internal buses 

of the generators.  We have 

                                      
and 

                                                     (13)                                                               

where 

              𝑃𝑟 = −𝑃𝑖 = 𝑃𝑑𝑐  

and 

              𝑄𝑟 = 𝑄𝑖 = 𝑄𝑑𝑐  

 

It is assumed here that the DC link is lossless and the power factors at the rectifier and inverter stations are 

equal.  𝑃𝑑𝑐  and 𝑄𝑑𝑐  are the active and reactive power components of the DC link that depend upon the DC link 

controller dynamics.  The effect of the rectifier and inverter ends of the DC link as additional bus power 

injections at the internal bus of the generator is given by                           

          
                                                                                     (14)                       

                                           
                                                                                     (15)                                                                           

where 𝑑𝑘𝑟  and 𝑑𝑘𝑖  are the appropriate (k, 1) and (k, 2) elements of the matrix  𝐷𝐷 . 

From Eqs. (14) and (15), we get 

               ∆𝑃𝑘𝑟 = 𝑎𝑘𝑟𝑃𝑑𝑐 − 𝑏𝑘𝑟𝑄𝑑𝑐                         (16)                                                                     
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and 

               ∆𝑃𝑘𝑖 = −𝑎𝑘𝑖𝑃𝑑𝑐 − 𝑏𝑘𝑖𝑄𝑑𝑐  

 

As in the case of the load model representation, here also the ratios  
𝐸𝑘

𝑉𝑟
   and  

𝐸𝑘
𝑉𝑖
   are assumed to be 

constant, corresponding to their prefault values.  Since a simple structure is assumed for the DC link controller, 

the output of which is Pdc, let Qdc = qr Pdc, where qr is a constant. 

 From Eq. (16), we get the total bus power injections at the kth generator due to the DC link as  

                          ∆𝑃𝑘𝐷 = ∆𝑃𝑘𝑟 + ∆𝑃𝑘𝑖 =   𝑎𝑘𝑟 − 𝑎𝑘𝑖  − 𝑞𝑟(𝑏𝑘𝑟 + 𝑏𝑘𝑖)}𝑃𝑑𝑐  

          = 𝑐𝑘𝐷𝑃𝑑𝑐           𝑘 = 1,2… .𝑚                  (17)                                                                                    

                                                                                                  Where ckD is the expression in brackets in Eq. (17).  

The parameters,  (k = 1, 2…m, j = 1, 2…n), 

which reflect the effect of the loads and the DC link, are thus computed for both the faulted and postfault 

condition.  By kron reduction technique, the bus admittance matrix 𝑌𝐵𝑈𝑆  is reduced to the internal nodes of the 

generators for these two conditions. 

 

 

C. Inclusion of DC link Dynamics 

A structure similar to that described earlier is assumed for the DC link controller whose equations in terms of 

𝑃𝑑𝑐  are  𝑃𝑑𝑐 = −  1
𝑇𝑑𝑐
  𝑃𝑑𝑐 +

𝑃𝑟𝑒𝑓
𝑇𝑑𝑐

 +  
𝐾𝑎

𝑇𝑑𝑐
  𝑢            (18)                                                  

Where u is the external control signal (ECS) obtained from the AC system quantities, such as the difference in 

rotor speed of adjacent generators.  The DC link dynamics are incorporated into the transient stability analysis in 

manner similar to the approach described earlier.  Also, 𝑃𝑑𝑐  is constrained to vary with in the specified practical 

limits.  While the faulted system equations are integrated, Eq. (18) also is solved for 𝑃𝑑𝑐 .  At the end each time 

step, the additional bus power injections at the internal buses of the generators are calculated using Eq. (17).  

The effect of DC link is thus represented as the term that modifies the power input of the generator. 

 

III. System Equations 

Under the usual assumptions [1] for the classical model, and following notation in [2], the system equations in 

the centre-of-angle reference frame are 

  𝑀𝑘𝜔𝑘  = 𝑃𝑘 − 𝑃𝑒𝑘 −
𝑀𝑘

𝑀𝑇
𝑃𝐶𝑂𝐴  

                       𝜃𝑘 = 𝜔𝑘                       k = 1, 2….m     

            

                          (19)                                                               

where 

         𝑃𝑘 = 𝑃𝑚𝑘 − ∆𝑃𝑘𝐿 − ∆𝑃𝑘𝐷 −  𝐸𝑘  
2𝐺𝑘𝑘              

         𝑃𝑒𝑘 =   𝐶𝑘𝑗 sin 𝜃𝑗𝑘 + 𝐷𝑘𝑗 cos 𝜃𝑘𝑗  
𝑚
𝑗=1
≠𝑘

 

            𝐶𝑘𝑗 =  𝐸𝑘   𝐸𝑗  𝐵𝑘𝑗  ;  𝐷𝑘𝑗 =  𝐸𝑘   𝐸𝑗  𝐺𝑘𝑗  

and  

            

            𝜃𝑘 = 𝛿𝑘 − 𝛿𝑜  

Where 𝛿𝑜  is the centre of angle defined by 

 

            𝑀𝑇𝛿𝑜 =  𝑀𝑘𝛿𝑘
𝑚
𝑘=1  ,  𝑀𝑇 =  𝑀 𝑘

𝑚
𝑘=1  

 

The following equation for 𝜔𝑜 = 𝛿𝑜  is easily derived 
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 𝑀𝑇𝜔𝑜 =  𝑃𝑘
𝑚
𝑘=1 − 2  𝐷𝑘𝑗 cos 𝜃𝑘𝑗

𝑚
𝑗=𝑘+1

𝑚−1
𝑘=1                                                           

                       ≜ 𝑃𝐶𝑂𝐴                              (20) 

In our formulation, since the system loads are not converted into constant impedances, the transfer conductance 

terms are only due to the transmission lines and hence can be neglected, i.e., 𝐷𝑘𝑗 = 0.  If the angle is constant, 

i.e.,  𝑃𝑘 = 0, then 𝑃𝐶𝑂𝐴 = 0 [13]. The postfault SEP is obtained by solving the set of nonlinear equations 

   𝑃𝑘 = 𝑃𝑒𝑘                       k = 1, 2…..m-1                   (21)                                                         

Solution of these power flow equations is discussed extensively in the literature [13, 14]. 

 

A. Transient Energy Function 

          The transient energy function used is that given in [2], assuming the damping to be zero 

  

 
                          

                = kinetic energy (KE) + rotor potential energy    

                   (PE) + magnetic potential energy (PE) 

 

            = 𝑉𝑘 𝜔  + 𝑉𝑝 𝜃                                      (22)                                                            

where 

          𝑉𝑝 𝜃  = rotor PE + magnetic PE 

 

B. Computing 𝑉𝑐𝑟  

Following [3], 𝑉𝑐𝑟  is computed as the value of 𝑉𝑝  along the sustained fault trajectory at the instant 𝑉𝑝 = 0.  This 

happens to be a point on the so-called potential energy boundary surface (PEBS) [13].  An assumption is made 

that the PEBS crossing of the faulted trajectory is a good approximation to the value of 𝑉𝑐𝑟 , which is the value of 

V(x) at the controlling UEP [3, 13]. 

C. Computational Algorithm 

The algorithm for calculating the critical clearing time based on the proposed method is as follows: 

 1.  Load flow calculation is performed for the prefault AC/DC system. 

 2.  For the faulted and postfault states, the following computations are performed by augmenting the 

passive network with generator reactance. 

      a. The overall 𝑌𝐵𝑈𝑆  is computed excluding the loads and the DC link. 

         b. The distribution factors due to the system loads and DC link characteristics are computed as explained 

earlier. 

       c. The 𝑌𝐵𝑈𝑆  above is reduced to the internal buses of generators by eliminating all other buses.  In 

doing so, the transmission line resistance is neglected. 

 3.  The postfault SEP is computed by solving the nonlinear Eq. (21). 

    4.  The faulted Eqs. (18) & (19) are numerically integrated to obtain values of     𝜃, 𝜔 , 𝑃𝑑𝑐  at  𝑡 = ∆𝑡.  At the 

end of the integration interval, the following computations are done.  

       a. 𝑃𝑑𝑐  obtained from Eq. (18) is used in updating the bus power injections for both faulted and 

postfault states. 

       b. 𝑃𝑘  is accordingly modified in Eq. (19), and the new postfault SEP 𝜃𝑠 is computed by solving Eq. 

(21). 

        c. Using the updated values of 𝜃𝑠, the V-function in (22), as well as 𝑉𝑝  and 𝑉𝑝  are calculated. 
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         d. The integration is now continued for the faulted Eqs. (18) and (19) and steps (a) - (c) are 

repeated at 𝑡 = 2∆𝑡.  For the sustained fault trajectory, this is continued until 𝑉𝑝  changes sign from positive to 

negative.  The value of 𝑉𝑝  at this instant is an estimate of 𝑉𝑐𝑟 . 

 5.  Using this value of 𝑉𝑐𝑟 , the integration of the faulted equations is carried out and 𝑡𝑐𝑟  is reached when 

𝑉 𝜃, 𝜔  = 𝑉𝑐𝑟 .  Steps 4(a) and (b) are incorporated during the integration.  

 

IV.  SIMULATION RESULTS AND DISCUSSIONS 

Case 1: Line (5, 7), t = 0.18sec, Unstable without HVDC 

 
Figure. 4.2. Variation of Energy with time without HVDC 

 

Case1: line (5, 7), t = 0.18sec, Stable with HVDC 

 
Figure. 4.3. Variation of Energy with time with HVDC 
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Case1: line (5, 7), t = 0.18sec 

 

 
Figure. 4.4. Variation of potential energy with time 

 

Case1: line (5, 7), t = 0.18sec 

 
Figure. 4.5. Variation of kinetic energy with time 

Case1: line (5, 7), t = 0.18sec 

 
Figure. 4.6. Variation of Total energy with time 
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Case1: line (5, 7), t = 0.181sec of Machine-1 

 
Figure. 4.7. Variation of Rotor angle with time 

 

Case1: line (5, 7), t = 0.181sec of Machine-2 

 
Figure. 4.8. Variation of Rotor angle with time 

 

Case1: line (5, 7), t = 0.181sec of Machine-3 

 
Figure. 4.9. Variation of Rotor angle with time 
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Case 2: Line (7, 8), t = 0.182sec, Unstable without HVDC 

 
Figure. 4.10. Variation of Energy with time without HVDC 

 

Case2: line (7, 8), t = 0.182sec, Stable with HVDC 

 
Figure. 4.11. Variation of Energy with time with HVDC 

 

Case2: line (7, 8), t = 0.182sec 

 
Figure. 4.12. Variation of potential energy with time 
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Case2: line (7, 8), t = 0.182sec 

 
Figure. 4.13. Variation of kinetic energy with time 

 

Case2: line (7, 8), t = 0.182sec 

 
Figure. 4.14. Variation of Total energy with time 

 

Case2: line (7, 8), t = 0.183sec of Machine-1 

 
Figure. 4.15. Variation of Rotor angle with time 
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Case2: line (7, 8), t = 0.183sec of Machine-2 

 
Figure. 4.16. Variation of Rotor angle with time 

 

Case2: line (7, 8), t = 0.183sec of Machine-3 

 
Figure. 4.17. Variation of Rotor angle with time 

 

Case 3: Line (4, 6), t = 0.56sec, Unstable without HVDC 

 
Figure. 4.18. Variation of Energy with time without HVDC  
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Case 3: Line (4, 6), t = 0.56sec, Unstable without HVDC 

 
Figure. 4.19. Variation of Energy with time with HVDC  

Case 3: Line (4, 6), t = 0.56sec 

 
Figure. 4.20. Variation of Potential energy with time  

Case 3: Line (4, 6), t = 0.56sec 

 
Figure. 4.21. Variation of kinetic energy with time  
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Case 3: Line (4, 6), t = 0.56sec 

 
Figure. 4.22. Variation of Total energy with time  

Case 3: Line (4, 6), t = 0.57sec of Machine-1 

 
Figure. 4.23. Variation of Rotor angle with time  

 

Case 3: Line (4, 6), t = 0.57sec of Machine-2 

 
Figure. 4.24. Variation of Rotor angle with time  
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Case 3: Line (4, 6), t = 0.57sec of Machine-3 

 
Figure. 4.25. Variation of Rotor angle with time  

 

V.  CONCLUSION 
  In this paper, a technique is proposed for applying to the direct method of stability analysis to multi-

machine AC/DC systems. A new method of handling transfer conductances is presented that is also useful in 

representing the DC link characteristics in the swing equations. The centre-of-angle formulation is used. A 3-

machine, nine-bus system illustrates the validity of the method and the effects of the DC link in improving 

transient stability. Three case studies have been done and the computational algorithm and simulation results are 

presented. 

VI. APPENDIX 

 

Generator data: Base 100MVA  

Gen 1: 16.5/230 kv 

Gen 2: 18/230 kv 

Gen 3: 13.8/230 kv 

Ka = 1.0 pu/rad per sec 

Tdc = 0.1 sec 

Pref = 0.0 

Maximum Pdc = 2.0 pu 

Minimum Pdc = -2.0 pu 

qr = 0.5 
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