
International Journal of Engineering Research and Development

e-ISSN: 2278-067X, p-ISSN: 2278-800X, www.ijerd.com

Volume 10, Issue 6 (June 2014), PP.37-49

37

Algorithm for sequence mining using gap constraints

Pinkal Shah, Prof. (Dr.) A.K.Dua
1
Computer Science, SET Amity University Rajasthan Jaipur, India

2
M.Tech (Computer Science), ASET Amity University Rajasthan Jaipur, India

Abstract:- The sequence mining problem consists in finding frequent sequential patterns in a database of time-

stamped events. Some application domains require limiting the maximum temporal gap between events in the

input sequences. However concentration on such constraint is critical for most sequence mining algorithms. In

this paper we describe CCSM (Cache-based Con-strained Sequence Miner), a new level-wise algorithm that

overcomes the troubles usually related to this kind of con-straints. CCSM adopts an approach based on k-way

intersections of idlists to compute the support of candidate sequences. Our k-way intersection method is

enhanced by the use of an effective cache that stores intermediate idlists for reuse in future. The reuse of

intermediate results involves a surprising reduction in the actual number of join operations performed on idlists.

CCSM has been experimentally compared with cSPADE, a state of the art algorithm, on several synthetically

generated datasets, achieve better or similar results in most cases.

Categories and Subject Descriptors— Database management: Database Applications - Data Mining.

General Terms— Algorithms, Performance, Experimentation.

Keywords:- Sequential patterns and mining, constraints, intersection, vertical dataset.

I. INTRODUCTION
 The problem of mining frequent sequential patterns was introduced by Agraval and Srikant in [2]. In

the following work the same authors discussed the introduction of con-straints on the mined sequences, and

proposed GSP [9], a new algorithm dealing with them. In the last years, many new algorithms were given for

solving the same problem, also under different user-provided constraints [10, 11, 7, 4, 6, 3]. We can think of the

problem of mining few Frequent Sequential Patterns (FSP) as an abstraction of Frequent Pattern (FP) mining to

temporal databases. FP mining aims to find patterns (itemsets) occurring with minimum support within a

transactional database (D), whose transactions correlated to collections of items. A pattern is frequent if its

support is greater than or equal to a given threshold x%, i.e. if it is set-included in at least x%. Database |D| input

transactions, where |D| is the total number of transactions of D. A given database D for the FSP problem is

instead composed of a collection of sequences. Each of them correlated to a temporally ordered list of events,

where each event is a collection of items (itemsets) occurring concurrently.

 The temporal ordering among the events is directed from the absolute timestamps associated with the

events. A sequential pattern is frequent if its support is greater than or equal to a given threshold x%, i.e. if it is

"contained" in (or it is a subsequence of) at least x%. Database |D| input sequences, where |D| is the number of

sequences included in D. To make more natural both problem formulations, we may consider them within the

application context of the market basket analysis (MBA). In this context, each transaction (itemsets) occurring

in a database D of the FP problem correlates to the collection of items purchased by a customer during a single

visit to the market. FP mining for MBA consists in finding frequent associations among the items purchased by

customers. In the general case, we are thus neither interested in the timestamp of each purchased basket, nor in

the identity of its customer, so the input database does not need to store such information. Conversely, FSP

mining for MBA consists in predicting customer behaviors on the basis of their past purchases.

 Thus, Database D has also to include information about timestamp and customer identity of each

basket. The sequences of events included in D correspond to sequences of "baskets" (transactions) purchased by

the same customer during individual visits to the market, and the items of a sequential pattern can extent a set of

subsequent transactions belonging to the same customer. Thus, while the FP problem is interested in finding

intera-transaction patterns, the FSP problem determines inter-transaction sequential patterns. Due to the

similarities between the FP and FSP problems, several FP algorithms have

Algorithm for sequence mining using gap constraints

38

been adapted for mining frequent sequential patterns. Also like FP algorithms, FSP can adopt either a count-

based or intersection-based approach for determining the support of frequent patterns. The GSP algorithm,

which is derived from Apriori [1], adopts a count-based approach, together with a level-wise visit (Breadth-

First-Search) of the search space. At each iteration k, a set of candidate k-sequences of length k is generated,

and the dataset, stored in horizontal form, and it gets scanned to count how many times each candidate is

contained within each input sequences. Whereas the intersection-based approach, depends on a vertical-layout

database, where for each item a appearing in various input sequences we store an idlist L(A). The idlist contains

information about the identifiers of the input sequences (sid) that include A, and the timestamps (eid) associated

with each occurrence of A. Idlists are thus composed of pairs (sid, eid), and are more complex than the lists of

transaction identifiers (tidlists) explored by intersection-based FP algorithms. Using an intersection-based

method, the support of a candidate is decided by joining lists. In the FP algorithm, tidlists joining is done by

means of simple set-intersection. Conversely, idlist joining in FSP intersection-based algorithms explores more

complex temporal join operation. SPADE algorithm [11] is the best example of such intersection-based FSP

algorithms.

 Several real applications of FSP mining enforces specific constraints on the type of sequences

extracted [9, 7]. For example, we might be interested in searching frequent sequences of purchase events which

contain a given subsequence (super pattern constraint), or where the average price of items purchased is over a

given threshold or where the temporal intervals between each pair of consecutive purchases is below a given

threshold (max_gap constraint). Obviously we could solve this problem with a post processing phase: first we

extract from the database all the frequent sequences, and then we filter them on the basis of the unnatural

constraints. Unfortunately, when the constraint is not on the sequence itself but on its occurrences (as in the case

of the max_gap constraint), sequence filtering requires an additional scan of the database to verify whether a

given frequent pattern has still a minimum support under the constraint.

 Generally, FSP algorithms that directly deal with user-provided constraints during the mining process

are much more efficient, since constraints may involve an effective pruning of candidates, thus resulting in a

strong reduction of the computational cost.

 Unfortunately, the inclusion of some support-related constraints may require large number of

modifications in the code of an unconstrained FSP algorithm. For example, the introduction of the max_gap

constraint in the SPADE algorithm, gave rise to cSPADE, a very different algorithm [10].

 All the FSP algorithms rely on the anti-monotonic property of sequence frequency: all the

subsequences of a frequent sequence are frequent as well. This property is used by level-wise algorithms to

generate candidate k-sequence from frequent (k-1)-sequences. When an intersection-based approach is adopted,

we can determine the support of any k-sequence by means of join operations performed [8] on the idlist

associated with its subsequences. As a limit case, we could compute the support of a sequence by joining the

Atomic idlists associated with the single items included in the sequence, i.e., through a k-way join operation [5].

More efficiently, we could count the support of a sequence by joining the idlists associated with two generating

(k-1)-subsequences, i.e., through a 2-way join operation. SPADE [11] just adopts this 2-way intersection

method, and computes the support of a k-sequence by joining two of its (k-1)subsequences that share a common

suffix. Unfortunately, the adoption of 2-way intersections requires maintaining the idlists of all the (k-1)-

subsequences computed during the previous iteration.

 To limit memory requirement, SPADE subdivides the search space into small, manageable blocks. This

is accomplished by exploring suffix-based equivalence classes: two k-sequences are in the same class only if

they share a common (k-1)-suffix. Since all the generating subsequences of a given sequence belong to the same

equivalence class, equivalence classes are used to partition the search space in a way that allow each class to be

processed independently in memory. Unfortunately, the efficient method used by Zaki‟s SPADE to generate

candidates and join their idlists, cannot be exploited when a maximum gap constraint is considered. Therefore,

cSPADE is forced to adopt a different and bit more expensive way to generate sequences and join idlists, also

maintaining in memory F2, the set of frequent 2-sequences.

 In this paper we discuss CCSM (Cache-based Constrained Sequence Miner), a new level-wise

intersection-based FSP algorithm, dealing with the maximum gap constraint. The main addition of CCSM is the

adoption of k-way intersections to compute the support of candidate sequences. Our k-way intersection method

is enhanced by the use of an effective cache which store intermediate generated idlists.

Algorithm for sequence mining using gap constraints

39

 The idlist reuse allowed by cache lead to a surprising reduction in the actual number of join operations

performed, so that the number of joins performed by CCSM approaches the number of joins performed when a

pure 2-way intersection method is adopted, but require much less memory. Here in this it becomes interesting to

compare the performances of CCSM with the ones achieved by cSPADE when a maximum gap constraint is

enforced.

 The rest of the paper is organized as follows. Section 2 formally defines the FSP problem, while

Section 3 describes the CCSM algorithm. In Section 4 we report and discuss experimental results. Finally

Section 5 presents some concluding remarks.

II. SEQUENTIAL PATTERNS MINING

A. 2.1 Problem Statement

Definition 1. (SEQUENCE OF EVENTS) Let I = {i1,…..im} be a set of m distinct items. An event (itemset) is a

non-empty

subset of I. A sequence is a temporally ordered list of events.

We denote an event as (j1, j2… ,jm) and a sequence as (α1 →,. ,→ αk), where each ji is an item and each αi is an

event (ji ∈ I and αi

⊆ I). The symbol → denotes a happens-after relationship. The items that appear together in an event happen

simultaneously. The length |x| of a sequence x is the number of items contained in the sequence (|x| = Ʃ | αi |). A

sequence of length k is called a k-sequence.

Even if an event represents a set of items occurring simultaneously, it is convenient to assume that there exists

an ordering relationship R among them. Such order makes un-equivocal the way in which a sequence is written,

e.g., we cannot write QP → YXZ since the correct way is PQ → XYZ

This allows us to say, without ambiguity, that the sequence

P → QS is a prefix of P → XYZ → P, while YZ → P is a suffix. A prefix/suffix of a given sequence is

particular subsequences of α (see Def. below).

Definition 2. (Sequence of Events) A Sequence

α = (α1 →,…,→αk) is contained in a sequence β = (β1 →,…,→βm) (denoted as), if there exist integers 1≤

i1<….<

ik ≤ m such hat α1 ⊆ βi1,…, αk ⊆ βik. We also say that is a subsequence of β , and that β is a super-sequence of α..

Definition 3. (Sequence Of Events) A temporal database is a collection of input sequences :

D = { α | α = (sid, α ,eid)},

where sid is a sequence identifier, α = (α1 →,…,→αk) is an event sequence, and eid = (eid1,eid2,…. ,eidk) is a

tuple of unique event identifiers, where each eidi is the timestamp (occurring time) of event αi .

DEFINITION 4 . (GAP CONSTRAINED OCCURRENCE OF A SEQUENCE) Let β a given input sequence,

whose events β = (β1 →,…,→βm) are time-stamped with (eid1,eid2,…. ,eidk)

. The gap between two consecutive events βi and βi+1 is thus defined as (eidi+1 - eidi).

A sequence α = (α1 →,…,→αk) occurs in β under the minimum gap and maximum gap constraints, denoted as α

⊆ β , if there

exists integers 1≤ i1 ≤…≤ ik ≤ m such that α1 ⊆ βi1,…, αk ⊆ βik. and ∀j, 1< i1 <…..< ik, min_gap ≤ (eidij - eidij-1) ≤

max_gap, where min_gap and max_gap are user specified thresholds.

Algorithm for sequence mining using gap constraints

40

When no constraints are specified, we denote the occurrence of

α in β as α ⊆ β. This case is a simpler case of sequence occurrence, since we have that α ⊆ β simply if α ≤ β

holds.

Definition 5 . (SUPPORT AND CONSTRAINTS) The support of a sequence pattern α , denoted as σ(α), is the

number of distinct input sequences β such that α ⊆ β . If a maximum/minimum gap constraint has to be

satisfied, the”\occurrence" relation to hold is α ⊆c β.

Definition 6. (SEQUENTIAL PATTERN MINING) Given a sequential database and a positive integer min_sup

(a user-specified threshold), the sequential mining problem deals with finding all patterns α along with their

corresponding supports, such that σ(α) ≥ min sup.

B. Apriori Property And Constraints

 Also in the FSP problem the Apriori property holds: all the subsequences of a frequent sequence are

frequent. An FSP constraint C is anti-monotone if and only if for any sequence β satisfying C, all the

subsequences α of β satisfy C as well (or, equivalently, if α does not satisfy C, none of the super-sequences β of

α can satisfy C). Note that the Apriori property is a particular anti-monotone constraint, since it can be restated

as 'the constraint on minimum support is anti-monotone'.

 In the problem statement above we have already defined two new constraints besides the minimum

support one: given two consecutive events appearing in a sequence, these constraints regards the

maximum/minimum valid gap between the occurrences of the two events in the various input database

sequences.

 Consider first the min_gap constraint. Let δ be an input database sequence. If β ⊆c δ, then all its

subsequences α, α ≤ β, satisfy α ⊆c δ . This property holds because α ≤ β implies that the gaps between the

events of α result "not shorter" than the gaps relative to β. Hence we can deduce that the min_gap constraint is

an anti-monotone constraint.

Conversely , if the max_gap constraint is considered and

α ≤ β ⊆c δ, we do not know whether α ⊆c δ holds or not. This is because α ≤ β implies that the gap between the

events of α may be larger than the gaps relative to β . For example, if (P→Q→R) ⊆c δ , the gaps relative to

P→R (i.e. the gaps between the events P and R in δ) are surely larger than the gaps relative to P→Q and Q→R.

So, if the gap between the events Q and R is exactly equal to max_gap, the maximum gap constraint cannot be

satisfied by P→R, i.e. P→R ⊆c δ . Hence, we can conclude that, using this definition of sub/super-sequence

based on ≤ , the max_gap constraint is not anti-monotonic.

C. Contiguous Sequences

 We have shown that the property 'β satisfies max_gap constraint' does not propagate to all

subsequences of α of β (α ≤ β). Nevertheless we can introduce a new definition of subsequence that allows such

inference to hold.

Definition 7. (CONTIGUOUS SUBSEQUENCE) Given a sequence β= (β1 →….→ βm) and a subsequence α=

(α1 →,….,→α n), is a contiguous subsequence of β, denoted as α ≤ β, if one of the following holds:

1. α is obtained from β by dropping an item from either β1 or βm ;

2. α is obtained from β by dropping an item from βi , where | βi | ≥ 2;

3. α is a contiguous subsequence of α‟, and α‟ is a contiguous subsequence of β.

Note that during the derivation of a contiguous subsequence α from β, middle events of β cannot be removed, so

that the gaps between events are preserved. Therefore, if δ is an input database sequence and β ⊆c δ, and α ≤ β ,

then α ⊆c δ is satisfied in presence of max_gap constraints.

LEMMA 8. If we use the concept of contiguous subsequence

(≤), the maximum gap constraint becomes anti-monotone as well. So, if β is a frequent sequential pattern that

satisfies the max gap constraint, then every α, α ≤ β

Algorithm for sequence mining using gap constraints

41

DEFINITION 9. (PREFIX/SUFFIX SUBSEQUENCE) Given a sequence α = (α1→,….,→αn) of length k = |α |,

let (k-1)-prefix(α) ((k-1)-suffix(α)) be the sequence obtained from α by removing the first (last) item of the event

α1 (αn). We can say that an item is the first/last one of an event without ambiguity, due to the lexicographic

order of items within events. We can now recursively define a generic n-prefix(α) in terms of the

(n+1)-prefix(α). The n-prefix(α) is obtained by removing the first (last) item of the first (last) event appearing in

the (n + 1)-prefix(α). A generic n-suffix(α) can be defined similarly. It is worth noting that a prefix/suffix of a

sequence α is a Particular contiguous subsequence of α, i.e. n-prefix(α) ≤ αand n-suffix(α) ≤ α.

D. Constraints Enforcement

 Algorithms solving the FSP problems usually search for Fk exploiting in some way the knowledge of

Fk-1. The enforcement of anti-monotone constraints can be pushed deep into the mining algorithm, since patterns

not satisfying an anti-monotone constraint C can be discarded immediately, with no alteration to the algorithm

completeness (since their super-patterns do not satisfy C too).

More importantly, the anti-monotone constraint C is used during the generation of candidates. Remember that,

according to the Apriori definition, a k-sequence can be a “Candidate” to include in Fk only if all of its (k-1)-

subsequences result to be

Included Fk-1.

 In our case, we will use the ≤ relation to support the notion of subsequence, in order to ensure that all

the contiguous (k-1)-subsequences of α ∈ Fk will belong to Fk-1. Note that if we used the general notion of

subsequence (≤), the number of the (k-1)-subsequences of α should be k. Each of them could be obtained by

removing a distinct item from one of the events of α.

 Conversely, since we have to use the contiguous subsequence relation (≤), the number of contiguous

(k-1)-subsequences of α may be less than k : each of them can be obtained by removing a single item only from

particular events in α, e.g. items belonging to the starting/ending event of α.

 In practice, each candidate k-sequence can simply be generated by combining a single pair of its

contiguous (k-1)-subsequences in Fk-1. We can now discuss the pattern generation phase of SPADE, which does

not use the concept of contiguous subsequences, and thus does not work with max_gap constraints. SPADE

generates a candidate k-sequence from a pair of frequent (k-1)-subsequences that share a common (k-2)-prefix.

For example, α = P→Q→R→S is obtained by combining the two subsequences P→Q→R and P→Q→S, which

share the 2-preffix P→Q.

 Unfortunately, P→Q→S is not a contiguous subsequence of α This implies that, even if α could be

frequent and satisfy a given max_gap constraint, i.e. α ∈ F4 , its sub-sequence P→Q→S could not have been

included in F3 as not satisfying the same max_gap constraint. In other words, SPADE might loose candidates

and relative frequent sequences. cSPADE overcomes this limit by exactly using the contiguous subsequence

concept. α = P→Q→R→S is now obtained from P→Q→R and R→S, i.e. by combining the (k-1)-prefix and the

2-suffix of α . It is straightforward to see that both the (k-1)-prefix and 2-suffix of α are contiguous

subsequences of α .

 Unfortunately, the need of using contiguous subsequences to guarantee anti-monotonicity under the

max_gap constraint partially destroys the prefix-class equivalence self-inclusion of SPADE, which ensures high

locality and low memory requirement. While each prefix-class is mined, cSPADE also needs to maintain F2 in

the main memory, since it uses 2-suffixes to extend frequent (k-1)-sequences.

 The candidate generation method adopted by CCSM was inspired by GSP [9], which is also based on

the contiguous subsequence concept. We generate a candidate k-sequence α from a pair of frequent (k-1)-

sequences, that share with α either a (k-2)- prefix or a (k-2)-suffix. It easy to see that both these frequent (k-1)-

sequences are contiguous subsequences of α .

 Note that the number of candidates generated by cSPADE can be larger than the ones generated by

CCSM/GSP. We show this with an example. Suppose that P→ Q→ R ∈ F3, and that the only frequent 3-

sequence having prefix Q → R is Q→ R→

Algorithm for sequence mining using gap constraints

42

S. CCSM directly combines these two 3-sequences to obtain a single potentially frequent 4-sequence P→ Q →

R → S. Conversely, cSPADE tries instead to ex-tend A → B → C with all the 2-sequences in F2 that start with

C. In this way, cSPADE might generate a lot of candidates, even if, due to our hypotheses, the only candidate

that has chances to be frequent is P→ Q→ R→ S.

III. THE CCSM ALGORITHM
 Similarly to GSP, CCSM visits level-wise and bottom-up the lattice of the frequent sequential patterns,

building at each iteration Fk, the set of all frequent k-sequences. CCSM starts with a count-based phase that

mines a horizontal database, and extracts F1 and F2.

During this phase the database is scanned, and each input sequence is checked against a set of candidate

sequences. If the input sequence contains a candidate sequence, the counter associated with the candidate is

incremented accordingly. At the end of this count-based phase, the pruned horizontal database is trans-formed

into a vertical one, so that our intersection-based phase can start.

Thereinafter, when a candidate k-sequence is generated from a pair of frequent (k-1)-patterns, its support is

computed on-the-fly using items idlist intersections. This happens by joining the atomic idlists (stored in the

vertical database) that are associated with the frequent items in F1 , as well as several previously computed

intermediate idlists that are found in a cache.

In order to describe how the intersection-based phase works, it is necessary to discuss how candidates are

generated, how idlists are represented and joined, and how CCSM idlist cache is organized.

Candidate generation. At iteration k, we generate the candidate k-sequences starting from the frequent (k-1)-

sequences in Fk-1 . For each f € Fk-1, we generate candidate k-sequences by merging f with every f„ € Fk-1 such

that (k-2)-suffix(f) = (k-2)-prefix(f
'
). For example, f : QS→Q is extended with f „: S→Q→Q to generate the

candidate 4-sequence QS→Q→Q. Note that by construction, f and f „ are contiguous subsequences of the new

candidate. To make more efficient the search in Fk-1 for pairs of sequences f and f„ that share a common

suffix/prefix, we aggregate and link the various groups of sequences in Fk-1.

Figure 1 illustrates the generation of the candidate 4-sequences starting from F3. On the left-hand and on the

right-hand side of the figure two copies of the 3-sequences in F3 are shown. These sequences are

lexicographically ordered with respect either to their 2-suffixesor 2-prefixes.

Moreover, sequences sharing the same suffix/prefix are grouped (this is represented by circling each

aggregation/partition with dotted boxes). For example, a partition appearing on the left side is {QS → Q; S → S

→ Q}.

If two partitions that appear on the opposite sides share a common contiguous 2-subsequence (2-suffix = 2-

prefix), they are also linked together. For instance, two linked partition are

{QS → Q; S → S → Q} (on the left), and {S → QS; S → Q →

Q} (on the right). Due to the sharing of suffix/prefix within and between linked partitions, we can obviously

save memory to represent F3.

The linked partitions of frequent sequential patterns are the only ones we must combine to generate all the

candidates. In the middle of Figure 1 we show the candidates generated for this example. Candidates than do not

result frequent are dashed boxed, while the frequent ones are indicated with solid line boxes. Note that, before

passing to the next pair, we first generate all the candidates from the current pair of linked partitions.

The order in which candidates are generated enhances temporal locality, because the same prefix/suffix is

encountered several times in consecutively generated candidates. Our caching system takes advantage of this

locality; storing and reusing intermediate idlist joins.

Algorithm for sequence mining using gap constraints

43

Figure 1: CCSM candidate generation.

Idlist intersection. To determine the support of a candidate k-sequence p, we have first to produce the associated

idlist L(p). Its support will correspond to the number of distinct sid values contained in L(p).

 To produce L(p), we have to join the idlists associated with two or more subsequences of p. If both

L(P„1) and L(P„2) are available, where P„1 are P„2 are the two contiguous subsequences whose combination

produces p, L(p) can be generated very efficiently through a 2-way intersection: L(p) = L(P„1) ∩ L(P„2).

Otherwise we have to intersect idlists associated with smaller subsequences of p. The limit case is a k-way

intersection, when we have to intersect atomic idlists associated with single items.

 As an example of a k-way intersection, consider the candidate 3-sequence P→Q→R. Our vertical

database stores L(P), L(Q) and L(R), which can be joined to produce L(P→Q→R). Each atomic list stores (sid;

eid) pairs, i.e. the temporal occurrences (eid) of the associated item within the original input sequences (sid).

When L(P), L(Q) and L(R) are joined, we search for all occurrences of A followed by an occurrence of B, and

then, using the intermediate result L(P→Q), for occurrences of C after P→Q. If a maximum or minimum gap

constraint must be satisfied, it is also checked on the associated timestamps (eids).

Note that in this case we have generated the pattern

 P→Q→R by extending the pattern from left to right. An important question regards what information

has to be stored along with the intermediate list L(P→Q). We can simply show that, if we extend the pattern

from left to right, the only information needed for this operation is those related to timestamps associated with

the last item/event of the sequence.

 With respect to L(P→Q), this information consists in the list of (sid; eid) pairs of the Q event. Each

pair indicates that an occurrence of the specified sequential pattern occurs in the input sequence sid, ending at

time eid.

On the other hand, if we generate the sequence by extending it from right to left, the intermediate sequence

should be B→C, but the information to store in L(B→C) should be related to the first item/event of the

sequence (B). In this case, each (sid, eid) pair stored in the idlist should indicate that an occurrence of the

specified sequential pattern exists in input sequence sid, starting at time eid. Consider now that we use a cache

to store intermediate sequences and associated idlists. In order to improve cache reuse, we want to exploit

cached sequences to extend other sequences from left to right and vice versa.

Therefore the lists of pairs (sid, eid) should be replaced with

lists of terns (sid, first_eid, last _eid), indicating that an

Occurrence of the specified sequential pattern occurs in input sequence sid, starting at time first_eid and ending

at time last_eid. Finally, note that two types of idlist join are possible: equality join (denoted as ∩e) and

temporal join (denoted as ∩t

Idlist caching. Our k-way intersection method can be for equality join, and (min_gap, max_gap) constraint-

Algorithm for sequence mining using gap constraints

44

enforcing temporal join are shown below:

L1∩e L2 = {(sid2 , eid2) ∈ L2 |(Ǝ(sid1, eid1) ∈ L1)

(sid1 = sid2 ˄ eid1 = eid2)}

The result of this join is written in line 4 for future reuse. Since the cache contains all the prefixes of the current

sequence along with the associated idlists, reuse is optimal Considering the example of Figure 2, if the candidate

P→P→QF is then generated, the third cache line corresponding to the common prefix P→P→Q will be reused.

In this way, the support of P→P→QF can be computed by performing a single equality join between the idlist in

line 3 and L(F).

when candidate sequences are generated in lexicographic or-der. Furthermore, as idlist length (and join cost)

decreases as sequence length increases, the joins saved by exploiting the cached idlists are the most expensive

ones.

Figure 2: Example of cache usage.

Figure 3: CCSM idlist reuse.

L1 ∩t L2 = {(sid2 , eid2) ∈ L2 j(Ǝ(sid1, eid1) ∈ L1) (sid1 = sid2 ˄ eid1 < eid2 ˄

min_gap ≤ |eid2 - eid1 | ≤ max_gap)}

Improved using a cache of k idlists. Figure 2 shows how our Each cache entry is numbered and contains two

values: a sequence and its idlist. Each sequence entry i is obtained from entry (i-1) by appending an item. In a

similar way, the associated idlist is the result of a join between the previous cached idlist and the idlist

associated with the last appended item. When a new sequence is generated, the cache is searched for a common

prefix and the associated idlist. If a common prefix is found, CCSM reuses the associated idlist, and rewrites

sub). The first is the usual set-intersection, and is used when we search for occurrences of one item appearing

simultaneously with the last item of the current sequence: for example, L(P→QC) = L(P→Q) ∩e L(C)).

Temporal join is instead an ordering-aware intersection operation, which may also check whether the minimum

and maximum gap constraints are satisfied. Consider the join of the example above, i.e. L(P→Q→R) = L(P→Q)

∩t L(C)). The result of this join is obtained from L(C) by discarding all its pairs (sid2, eid2) with non-matching

sid1's in the first idlist (L(P→Q)), or with a matching sid1 that is not associated with any eid1 smaller than eid2 .

The combined effect of cache use and candidate generation is illustrated in Figure 3. On the left-hand side a

fragment of the lists of the linked partitions sharing a common infix is shown. The right-hand side of the Figure

illustrates instead how candidates are generated. First we consider the

Partition(FG→A), i.e. the set of sequences sharing the prefix/suffix F G→A. L(FG→A) is processed first, using

the cache as described before. L(A) and L(B) are then joined left to right with L(FG → A) to obtain

L(FG→A→A) and L(FG→P→Q). Finally we join right to left

Algorithm for sequence mining using gap constraints

45

the lists so obtained with L(A) and L(C) to produce the lists associated with all the possible candidates. When

Partition

(FG→A) has been processed, all the intermediate idlists except those stored in cache are discarded, and the next

Partition

(FG→B) is processed. The cache currently contains L(FG→A) and all its intermediate idlists, so that L(FG) can

be reused for computing L(FG→B). Since partitions are ordered with respect to the common infix, similar

reuses are very frequent.

 Figure 4 shows the efficacy of CCSM caching strategy. The plots report the actual number of

intersection operations performed using 2-ways, pure k-ways and CCSM cached k-ways intersection methods

while mining two synthetic datasets. As it can be seen, our small cache is very effective since it allows saving a

lot of intersection operations over a pure k-ways method, although memory requirements are significantly lower

than those deriving from the adoption of a pure 2-ways intersection method.

IV. EXPERIMENTAL EVALUATION
 In order to evaluate the performances of the CCSM algorithm, we conducted several tests on a Linux

box equipped with a 450MHz Pentium II processor, 512MB of RAM and an IDE HD. The datasets used were

CS11, and CS21, two synthetic datasets generated with the publicly available IBM quest dataset generator. In

particular, the datasets contain 100;

000 customer sequences composed in the average of 10 (CS11) and 20 (CS21) transactions of average

length 5. The other parameters Ns , Ni , N , I used to generate the maximal sequences of average size S

= 4 (CS11) and S = 8 (CS21), were set to 5000, 25000, 10000 and 2:5, respectively. Note that these values are

exactly the same as those used to generate the synthetic datasets in [9, 10, 11]. Figure 5 plots the number of

frequent sequences found in datasets CS11 and CS21 as a function of the pattern length for different

values of the max_gap constraint. As expected, the number of frequent sequences is maximum when no

max_gap constraint is imposed, while it decreases rapidly for decreasing values of the max_gap constraint.

In order to assess the relative performance of our algorithm, we compared its running times with the ones

obtained under the same testing conditions by cSPADE (we acknowledge Prof. M.J. Zaki for kindly providing

us cSPADE code) [10, 11].

 Figure 6 reports the total execution times of CCSM and cSPADE on datasets CS11 and CS21 as a

function of the max_gap value. In the tests conducted with cSPADE we tested different configurations of the

command line options available to specify the number of partitions into which the dataset has to be split (-e #,

default no partitioning), and the maximum amount of memory available to the application (-m #, default

256MB).

 From the plots we can see that while on the CS11 dataset performances of the two algorithms are

comparable, on the CS21 dataset CCSM remarkably outperforms cSPADE for large values of max_gap, while

cSPADE is faster when max_gap is small. This holds because for large values of max_gap, the actual number of

frequent sequences is large (see Figure 5), and cSPADE has to perform a lot of intersections between relatively

long lists belonging to F2. CCSM on the other hand, reuses in this case several intersections found in the cache.

Since execution times increase rapidly for increasing values of max_gap, we think that the behavior of CCSM is

in general preferable over cSPADE one.

 The same considerations can be done looking at the plots reported in Figure 7 that report for a fixed

max_gap constraint (max_gap=8), the execution times of CCSM and cSPADE on datasets CS11 and CS21 as a

function of the minimum support threshold. The CCSM and cSPADE execution times resulted very similar on

the CS11 dataset, while on the CS21 dataset CCSM resulted, for max_gap=8, about twice faster than cSPADE.

V. CONCLUSIONS
 We have presented CCSM, a new FSP algorithm that mine temporal databases in the presence of user-

defined con-straints. CCSM searches for sequential patterns level-wise, and adopts an intersection-based method

to determine the support of candidate k-sequences. Each time a candidate k-sequence α is generated, its support

is determined on the y by joining the k atomic idlists associated with the frequent items (1-sequences)

constituting the candidate. This k-way intersection is, however, a limit case of our method. In fact our order of

generation of candidate ensures high locality, so that with high probability successively generated candidates

Algorithm for sequence mining using gap constraints

46

share a common subsequence of α . A cache is thus used to store the intermediate idlists associated with all the

possible prefixes of

α. When the idlist of another candidate β has to be built, we reuse the idlist corresponding to the common

subsequence of maximal length. The exploitation of such caching strategy entails a strong reduction in the

number of join operations actually performed. Finally, CCSM is able to consider the very challenging max_gap

constraint over the sequential pattern extracted. Preliminary experiments conducted on synthetically generated

datasets showed that CCSM remarkably outperforms cSPADE when the selectivity of the gap constraint is not

high. Since we are conscious that further optimization can be pushed into the code, we consider these results as

encouraging. We are now working on these optimizations and on extensions aimed to support other challenging

type of constraints. Our final goal is to design an adaptive algorithm that modifies its behavior on the basis of

the particular constraints defined by the user.

4(a)

4(b)

Figure 4: Number of intersection operations actually performed using 2-ways, pure k-ways and cached k-

ways intersection methods while mining two synthetic datasets.

Algorithm for sequence mining using gap constraints

47

5(a)

5(b)

Figure 5: Number of frequent sequences in datasets CS11 (minsup=0:30) and CS21 (minsup=0:40) as a

function of the pattern length for different values of the max_gap constraint.

6(a)

Algorithm for sequence mining using gap constraints

48

6(b)

Figure 6: Execution times of CCSM and cSPADE on datasets CS11 (minsup=0:30) and CS21

(minsup=0:40) as a function of the max_gap value.

7(a)

7(b)

Figure 7: Execution times of CCSM and cSPADE on datasets CS11 and CS21 with a fixed max_gap

constraint (max_gap=8) as a function of the minimum support threshold.

Algorithm for sequence mining using gap constraints

49

REFERENCES
[1] R. Agrawal, T. Imielinski, and S. A. Mining Associations between Sets of Items in Massive Databases.

In Proc. of the ACM-SIGMOD 1993 Int'l Conf. on Management of Data, pages 207{216, 1993.

[2] R. Agrawal and R. Srikant. Mining sequential patterns. In P. S. Yu and A. L. P. Chen, editors, Proc.

11th Int. Conf. Data Engineering, ICDE, pages 3{14. IEEE Press, 6{10 1995.

[3] J. Ayres, J. Gehrke, T. Yiu, and J. Flannick. Sequential pattern mining using bitmaps. In Proceedings

of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.

2002.

[4] M. N. Garofalakis, R. Rastogi, and K. Shim. SPIRIT: Sequential pattern mining with regular

expression constraints. In The VLDB Journal, pages 223{234, 1999.

[5] S. Orlando, P. Palmerini, R. Perego, and F. Silvestri. Adaptive and resource-aware mining of frequent

sets. In Proc. of the 2002 IEEE International Conference on Data Mining, ICDM, 2002.

[6] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M. Hsu. Prefixspan: Mining

sequential patterns by prefix-projected growth. In ICDE, pages 215{224, 2001.

[7] J. Pei, J. Han, and W. Wang. Mining sequential patterns with constraints in large databases. In Proc. of

Proceedings of the 11-th Int. Conf. on Information and Knowledge Management (CIKM 02), pages

18{25, 2002.

[8] A. Savasere, E. Omiecinski, and S. B. Navathe. An e cient algorithm for mining association rules in

large databases. In U. Dayal, P. M. D. Gray, and S. Nishio, editors, VLDB'95, Proceedings of 21th

International Conference on Very Large Data Bases, September 11-15, 1995, Zurich, Switzerland,

pages 432{444. Morgan Kaufmann, 1995.

[9] R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and performance

improvements. In P. M. G. Apers, M. Bouzeghoub, and G. Gardarin, editors, Proc. 5th Int. Conf.

Extending Database Technology, EDBT, volume 1057, pages 3{17. Springer-Verlag, 25{29 1996.

[10] M. J. Zaki. Sequence mining in categorical domains: Incorporating constraints. In CIKM, pages

422{429, 2000.

[11] M. J. Zaki. SPADE: An e cient algorithm for mining frequent sequences. Machine Learning,

42(1/2):31{60, 2001.

