
International Journal of Engineering Research and Development

e-ISSN: 2278-067X, p-ISSN: 2278-800X, www.ijerd.com

Volume 10, Issue 6 (June 2014), PP.16-21

16

Quad-Byte Transformation Performs Better Than

Arithmetic Coding

Jyotika Doshi, Savita Gandhi
GLS Institute of Computer Technology, Gujarat Technological University, Ahmedabad, INDIA

Department of Computer Science, Gujarat University, Ahmedabad, INDIA

jyotika@glsict.org

drsavitagandhi@gmail.com

Abstract:- Arithmetic coding (AC) is the most widely used encoding/decoding technique used with most of the

data compression programs in the later stage. Quad-byte transformation using zero frequency byte symbols

(QBT-Z) is a technique used to compress/decompress data. With k-pass QBT-Z, the algorithm transforms half

of the possible most-frequent byte pairs in each pass except the last. In the last pass, it transforms all remaining

possible quad-bytes. Authors have experimented k-pass QBT-Z and AC on 18 different types of files with

varying sizes having total size of 39,796,037 bytes. It is seen that arithmetic coding has taken 17.488 seconds

to compress and the compression rate is 16.77%. The compression time is 7.629, 12.1839 and 16.091 seconds;

decompression time is 2.147, 2.340 and 2.432 seconds; compression rate is 17.041%, 18.906% and 19.253%

with k-pass QBT-Z for 1, 2, and 3 pass respectively. Decoder of QBT-Z is very fast, so significant saving is

observed in decompression with QBT-Z as compared to arithmetic decoding. Both these techniques require

computing the frequencies before starting compression. It is observed that QBT-Z is more efficient than

arithmetic coding giving higher compression with very small execution time.

Keywords:- Data Compression, better compression rate, faster execution, quad-byte data transformation,

substitution using zero-frequency byte symbols, arithmetic coding

I. INTRODUCTION
Arithmetic coding (AC) is formulated by Elias [11] and was first implemented by Rissanen[12]. It is

the most widely used entropy coding method used in the later stage of most of the data compression techniques

like LZ methods, JPEG, MPEG etc. Grammer-based codes [10] and recent generation image and video

standards including JPEG2000 [20] and H.264 [21]-[24] utilize arithmetic coding instead of Huffman coding.

The main drawback of arithmetic coding is its slow execution. Many researchers [13-19] have tried to improve

the speed. Authors of this paper have also suggested faster implementations of arithmetic coding [8,9].

Authors of this paper have introduced block-wise k-pass quad-byte transformation using zero-

frequency bytes (QBT-Z) [5], where k is the number of repeated passes as specified by user. In each pass, it

computes frequency of quad-bytes, sort them to find most frequent quad-bytes and also find unused (zero-

frequency) byte symbols in a data block. In the next stage, transformation takes place. Here, more than one

most-frequent quad-byte is encoded with zero-frequency bytes at a time in each pass. In the first k-1 passes, half

of the possible frequent quad-bytes are transformed in each pass. In the last pass, all remaining possible quad-

bytes get transformed at a time.

Performance of faster arithmetic coding suggested by author [8] is compared with various numbers of

passes of QBT-Z. It is found that it is more efficient than arithmetic coding. Especially, QBT-Z decoder is too

small and executes very fast.

With 3-pass QBT-Z, when compressing different types of files from different domains with a total size

of nearly 40MB data, it is found to compress 2.5% more in nearly same time as compared to arithmetic coding.

Decompression time of QBT-Z is extremly low, just about 2.4 seconds as compared to 27 seconds of arithmetic

decoding time.

Thus, QBT-Z with fewer passes can be considered in place of arithmetic coding in programs like those

based on LZ algorithms, JPEG, MPEG where entropy encoder is used in later stage.

Quad-Byte Transformation Performs Better Than Arithmetic Coding

17

II. LITERATURE REVIEW
Arithmetic coding is an entropy encoding technique where compression rate cannot be improved

without changing the data model due to its entropy limitation. So improvement is suggested by researchers in its

execution time [8, 9, 13-19]. Its decoder is quite time consuming.

Researchers have worked on encoding pair of adjacent bytes. Byte-Pair Encoding (BPE) [1], digram

encoding [3, 4] and Iterative Semi-Static Digram Coding (ISSDC) [2] are such algorithms. These algorithms are

intended for text files. However, they can be applied to any type of source when the alphabet size is small.

These are all dictionary based algorithms.

Authors of this paper have proposed QBT-I [6] and BPT-I [7] dictionary based transformation

techniques. They are intended to introduce redundancy in the data for second stage conventional data

compression techniques. This algorithm forms logical groups of most frequent quad-byte or byte-pair data in

dictionary and encodes data using variable-length codeword made up of group number and index position of

data within group. Thus a quad-byte or byte-pair is encoded with less than 16-bits.

Byte pair encoding (BPE) algorithm proposed by P. Gage [1] compresses data by finding the most

frequent pair of adjacent bytes in the data and replacing all instances of this pair with a byte that was not in the

original data. The algorithm repeats this process until no further compression is possible, either because there

are no more frequently occurring pairs or there are no more unused bytes to represent pairs.

The variation of BPE is where algorithm is applied on data blocks in stead of entire file. In this paper, it

is referred to as m-pass QBT-Z. It increases the chances of getting unused bytes in a block to achieve

compression in any type of source. But, due to multiple iterations, BPE takes very long time to encode the data.

III. RESEARCH SCOPE
Digram encoding, ISSDC and BPT-I are all dictionary based techniques using index in encoding byte

pair. Digram encoding and ISSDC are better only when applied to small size alpahbet source. QBT-I and BPT-I

are intended for introducing data redundancy for second stage data compression like arithmetic coding or

huffman coding.

The problem with BPE is very large execution time due to many repeated passes. An improvement in

execution time is seen in k-pass BPT-Z.

Further improvement is possible with encoding quad-byte data instead of byte-pair data using zero-

frequency byte in a data block. In k-pass QBT-Z (Quad-Byte Transformation using Zero-frequency bytes),

block-wise quad-byte transformation is performed in fewer passes where number of passes k may be specified

by user to experiment. This reduced number of passes and transforming 4 bytes at a time help to reduce

execution time.

Arithmetic coding is found to execute very slow, especially its decoder. It is not possible to get more

compression due to its entropy limit. Arithmetic coding is used very widely in most of the compression

techniques in the later stage.

Research scope is in considering k-pass QBT-Z in place of most widely used entropy based arithmetic

coding technique. QBT-Z decoder is very fast. If k-pass QBT-Z gives better compression and takes less

encoding time, it can be considered to replace arithmetic coding.

IV. BRIEF INTRODUCTION TO K-PASS QBT-Z
QBT-Z is applied on data blocks and quad-bytes are substituted with unused bytes. The process of

substitution may be repeated multiple number of times, referred to as pass. Each pass of QBT-Z involves two

stages:

1. Determine unused bytes and frequent quad-bytes

2. Transform frequent quad-bytes by substitution with available zero-frequency bytes

Here, it needs to store substitution information for decoder. This information contains the number of

quad-bytes transformed and the substitution pairs of quad-byte and unused byte used to encode. At each pass,

this is the additional cost of data to be stored as header information with transformed data. So only quad-bytes

with specific minimum frequency (say 4) are worth to be considered while transforming.

Thus, at each pass, the algorithm determines how many quad-bytes to transform based on minimum of

avialable zero-frequency bytes and number of more frequent quad-bytes.

When k=1, all possible quad-bytes are transformed in single pass only. So, its header contains number

of quad-bytes transformed, say n; n substitution pairs and size of transformed data block. Then the transformed

data block is written.

When k=2, it transforms only half of the possible quad-bytes in the first stage. It stores the headaer

information and transformed buffer in memory itself. This data block is considered for encoding in the second

pass. While writing the resulting buffer in file, it needs additionally to store the number of passes also.

Quad-Byte Transformation Performs Better Than Arithmetic Coding

18

Thus, for k>1, it transforms only half of the possible quad-bytes in first k-1 passes. In the last pass, it

transforms all possible quad-bytes. While writing the output, it writes number of passes also for decoder to

know.

With m-pass QBT-Z, only one most frequent quad-byte is transformed in each pass. This process is

repeated maximum possible number of times, say m, until there are no more frequent quad-bytes or no more

unused (zero-frequency) bytes in the data block. Here, the header information contains only one substitution pair

details in each pass.

V. EXPERIMENTAL RESULTS AND ANALYSIS
Programs for Arithmetic coding (AC) with multi-bit processing [8] using shift, m-pass QBT-Z and k-

pass QBT-Z [5] are written in C language and compiled using Visual C++ 2008 compiler. QBT-Z is

implemented with the data block is of size 8KB and the data structure used to store quad-byte and its frequency

is binary search tree.

Programs are executed on a personal computer with Intel(R) Core(TM)2 Duo T6600 2.20 GHz

processor and 4GB RAM.

Experimental results are recorded using average of five runs on each test files. Most of the test files are

selected from Calgary corpus, Canterbury corpus, ACT web site. Test files are selected to include all different

file types and various file sizes as shown in Table 1.

Table 1 gives the overall compression rate (% of saving in compressed or transformed file size), BPS

(Average number of Bits used Per 8-bit Symbol), total execution time of compression and decompression of all

test files.

Table I. Experimental Results of AC, m-pass QBT-Z and k-pass QBT-Z

No.
Source

File Name

Source size

(Bytes)
Compressed File Size (Bytes)

AC

m-pass

QBT-Z

1-pass

QBT-Z

2-pass

ABT-Z

3-pass

QBT-Z

4-pass

QBT-Z

1 act2may2.xls 1348036 789951 730560 824736 765411 761401 760442

2 calbook2.txt 610856 367017 397802 474945 490188 490108 490183

3 cal-obj2 246814 194255 163030 198080 189119 186066 185127

4 cal-pic 513216 108508 81331 184599 112377 99506 97813

5 cycle.doc 1483264 891974 574132 812832 665628 633909 628959

6 every.wav 6994092 6716811 6996644 6996644 6997508 6998362 6999216

7 family1.jpg 198372 197239 198431 198446 198472 198497 198522

8 frymire.tif 3706306 2200585 1212183 1710533 1450974 1421200 1416383

9 kennedy.xls 1029744 478038 335045 389700 350533 346246 346290

10 lena3.tif 786568 762416 786243 786798 786858 786955 787052

11 linux.pdf 8091180 7200113 5973207 6617753 6397862 6358141 6354790

12 linuxfil.ppt 246272 175407 179391 197036 186334 184066 183416

13 monarch.tif 1179784 1105900 1130232 1153911 1166198 1166354 1166499

14 pine.bin 1566200 1265047 1110988 1271663 1242818 1232091 1226568

15 profile.pdf 2498785 2490848 2493687 2495262 2494758 2495009 2495315

16 sadvchar.pps 1797632 1771055 1729980 1751322 1744673 1743477 1743391

17 shriji.jpg 4493896 4481092 4479601 4488212 4487614 4487836 4488131

18 world95.txt 3005020 1925940 2170758 2461967 2544857 2544829 2545171

 Total Size (Bytes) 39796037 33122196 30743245 33014439 32272182 32134053
3211326

8

Overall Compression Rate (%) 16.770 22.748 17.041 18.906 19.253 19.305

Overall BPS (Bits Per Symbol) 6.658 6.180 6.637 6.4887 6.460 6.456

Total Compression Time (Sec) 17.488 268.434 7.629 12.183 16.091 20.994

Total Decompression Time (Sec) 27.158 4.697 2.147 2.340 2.432 2.543

Quad-Byte Transformation Performs Better Than Arithmetic Coding

19

Compresstion rate and Bits Per Symbol (BPS) given in Table 1 shows that m-pass QBT-Z gives the

best compression as compared to AC and k-pass QBT-Z, but the compression time is significantly very high.

Compression rate of AC is 16.77% as compared to 17.041%, 18.906%, 19.253% and 19.305% rate

achieved using 1-pass, 2-pass, 3-pass and 4-pass QBT-Z respectively. Here, m-pass (maximum possible passes)

QBT-Z performs the best with 22.748% saving. Refer Figure1. As k increases, compression rate increases.

Fig. 1: Compression Rate of AC, m-pass QBT-Z and k-pass QBT-Z

Figure 2 represents compression time. With k-pass QBT-Z, as k increases, it takes larger time to

compress but the compression is improved. The cost involved in compression time using m-pass QBT-Z is

significantly very high. It is 268.434 seconds as compared to nearly 17 seconds for AC and 3-pass QBT-Z.

Fig. 2: Compression Time (Seconds) of AC, m-pass QBT-Z and k-pass QBT-Z

Quad-Byte Transformation Performs Better Than Arithmetic Coding

20

Decompression using QBT-Z reverse transformation is extremely fast as expected. It decodes in nearly

2 to 2.4 seconds and there is no considerable difference observed in decoding time of k-pass QBT-Z for k

varying from 1 to 4. With m-pass QBT-Z also, 4.7 seconds is not that high as compared to 27 seconds

decompression time of arithmetic coding. Refer Figure 3.

When comparing arithmetic coding with k-pass QBT-Z, it is found that 3-pass QBT-Z is better giving

2.5% more reduction in file size taking less time. After 3-pass, improvement in compression is not that

significant, but increase in encoding time if seen to be linear with k.

Fig. 3: Decompression Time (Seconds) of AC, m-pass QBT-Z and k-pass QBT-Z

VI. CONCLUSION
QBT-Z with 3 numbers of passes performed better than arithmetic coding. It compresses more in less

time. With increased number of passes, compression rate is improved. After 3 passes, improvement rate is not

that significant. Compression time is observed to be linear with k. So, increasing number of passes will increase

compression time at constant rate. QBT-Z decoder is considerably very fast even with m-pass QBT-Z. It seems

to be beneficial to use 3-pass QBT-Z in place of arithmetic coding.

REFERENCES
[1]. Philip Gage, "A New Algorithm For Data Compression", The C Users Journal, vol. 12(2)2, pp. 23–38,

February 1994

[2]. Altan Mesut, Aydin Carus, “ISSDC: Digram Coding Based Lossless Dtaa Compression Algorithm”,

Computing and Informatics, Vol. 29, pp.741–754, 2010

[3]. Sayood Khalid, "Introduction to Data Compression",2nd edition, Morgan Kaufmann, 2000

[4]. Ian H. Witten, Alistair Moffat, Timothy C. Bell, “Managing Gigabytes-Compressing and Indexing

Documents and Images”, 2nd edition, Morgan Kaufmann Publishers, 1999

[5]. Jyotika Doshi, Savita Gandhi, “Quad-Byte Transformation using Zero-Frequency Bytes”, International

Journal of Emerging Technology and Advanced Engineering, Vol. 4 Issue 6, June 2014

[6]. Jyotika Doshi, Savita Gandhi, “Quad-Byte Transformation as a Pre-processing to Arithmetic Coding”,

International Journal of Engineering Research & Technology (IJERT), Vol.2 Issue 12, December 2013

[7]. Jyotika Doshi, Savita Gandhi, “Article: Achieving Better Compression Applying Index-based Byte-

Pair Transformation before Arithmetic Coding”, International Journal of Computer Applications

90(13):42-47, March 2014.

[8]. Jyotika Doshi and Savita Gandhi, “Computing Number of Bits to be processed using Shift and Log in

Arithmetic Coding”, International Journal of Computer Applications 62(15):14-20, January 2013

Quad-Byte Transformation Performs Better Than Arithmetic Coding

21

[9]. Doshi, J.; Gandhi, S., "Enhanced arithmetic coding using total frequency in power of 2 & processing

multi-bits at a time," Sixth International Conference on Contemporary Computing (IC3), August 2013

[10]. J. C. Kieffer and E. H. Yang, “Grammar-based codes: A new class of universal lossless source codes”,

IEEE Trans. Inform. Theory, vol. 46, pp. 737–754, 2000

[11]. F. Jelinek, “Probabilistic Information Theory”, Mc-Graw Hill, New York, 1968, 00. 476-489.

[12]. J. Rissanen, “Generalized kraft inequality and arithmetic coding”, IBM J. Res. Develop., vol. 20, pp.

198–203, May 1976.

[13]. G. G. Langdon, Jr., and J. Rissanen, “Compression of black-white images with arithmetic coding”,

IEEE Trans. Commun., vol. COMM-29, pp. 858–867, 1981.

[14]. C. B. Jones, “An efficient coding system for long source sequences”, IEEE Trans. Inform. Theory, vol.

IT–27, pp. 280–291, 1981.

[15]. I. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic coding for data compression” Commun. ACM,

vol. 30, pp. 520–540, 1987.

[16]. P. G. Howard and J. S. Vitter, “Arithmetic coding for data compression”, Proc. IEEE, vol. 82, pp. 857–

865, 1994.

[17]. A. Moffat, R. Neal, and I. Witten, “Arithmetic coding revisited,” ACM Trans. Inform. Syst., vol. 16, no.

3, pp. 256–294, July 1998

[18]. Boris Ryabko and Jorma Rissanen, “Fast Adaptive Arithmetic Code for Large Alphabet Sources With

Asymmetrical Distributions”, IEEE Communications Letters, 7(1), January 2003 pp. 33-35

[19]. J. Jhang, X. Ni, “An improved bit-level arithmetic coding algorithm”, Journal of Information and

Computer Sciencs, 5(3), 2010, pp 193-198

[20]. D. S. Taubman and M. W. Marcellin, JPEG2000: “Image Compression Fundamentals, Standards and

Practice”, Norwell, MA: Kluwer Academic, 2002.

[21]. T. Wiegand, G. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of the H.264/AVC video coding

standard,” IEEE Trans. Circuits Syst.Video Technol., vol. 13, no. 7, pp. 560–576, Jul. 2003.

[22]. Detlev Marpe, Heiko Schwarz, and Thomas Wiegand, “Context-Based Adaptive Binary Arithmetic

Coding in the H.264/AVC Video Compression Standard”, IEEE Trans. On Circuits and Systems for

Video Technology, vol. 13, no. 7, pp. 620-636, July 2003

[23]. M. Dyer,D. Taubman, and S. Nooshabadi, “Improved throughput arithmetic coder for JPEG2000”,

Proc. Int. Conf. Image Process., Singapore, Oct. 2004, pp. 2817–2820.

[24]. R. R. Osorio and J. D. Bruguera, “A new architecture for fast arithmetic coding in H.264 advanced

video coder”, Proc. 8th Euromicro Conf. Digital System Design, Porto, Portugal, Aug. 2005, pp. 298–

305.

