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Abstract:- The study of the distribution and determinants of disease prevalence in man is done primarily in 

Radiation Epidemiology. Epidemiologists seek to relate risk of disease to different levels and patterns of 

radiation exposure. In this paper we examine statistical model of Poisson regression previously employed for 

the estimation of radiation risk. We examine different regression techniques, which overcome the underlying 

assumptions of Poisson Regression for risk estimation and propose Hurdle's Model for the same. The models 

need application of logarithmic transform to yield the additive model instead of multiplicative model, which is 

usually used in Risk Assessment and thus obtain the Linear Dose-Response Model. 

I. INTRODUCTION 
 Epidemiology is concerned with study of distribution of disease and determinants of health-related 

states or events in specified human populations and application of this study for control of human health 

problems. It is observed that, people exposed to radiation usually suffer from cancer and other fatal diseases. For 

instance, there are two ways in which nuclear workers are exposed to radiation according to the Canadian 

Nuclear Safety Commission, either while working with sources of man-made radiation (nuclear industry, health 

care, research institutions or manufacturing) or they are exposed to elevated levels of natural radiation (mining, 

air crews construction). 

 

 Radiation is categorized as ionizig and non-ionizing.[8] Ionizing radiation is radiation with enough 

energy so that during an interaction with an atom it can remove bound electrons, i.e., it can ionize atoms. 

Examples are X-Rays and electrons.Non-ionizing radiation is radiation without enough energy to remove bound 

electrons from their orbits around atoms. Examples are microwaves and visible light.The ionizing radiation 

interacts with the cells and damages them, which in turn results in malignant growth in the body. Thus studying 

the levels of radiation and its corresponding effects can prove beneficial in setting the safety levels of exposure. 

 

 In our study we intend to develop a generalized model for risk evaluation or odds ratio for death due to 

cardiovascular disease and other cancer due to ionizing radiation. Radiation Effects Research Foundation has 

played an important role of carrying out cohort study on the Japanese Atomic Bomb survivors with a follow-up 

of 50 years. This report makes use of data obtained from the Radiation Effects Research Foundation (RERF), 

Hiroshima and Nagasaki, Japan. RERF is a private, non-profit foundation funded by the Japanese Ministry of 

Health, Labour and Welfare (MHLW) and the U.S. Department of Energy, the latter through the National 

Academy of Sciences. The objective is to apply suitable methods to gain further insight in the model developed 

by RERF on Cardiovascular diseases. Main outcome is to measure Mortality from stroke or heart disease as the 

underlying cause of death and dose response relations with atomic bomb radiation. This finding would 

significantly benefit the humanity as with growing technology, there are associated hazards. This is an 

interdisciplinary problem as it encompasses Epidemiology, Statistics and Data Analysis Methods. The paper 

starts discussion of prevalent risk models for low-ionized radiation. Aanalyse the strengths and limitations of the 

models used. This is followed by provision of theoretical background of Poisson Model, used for count data and 

estimation of relative risk. It comprises of multiplicative and additive models of relative risk. Finally it proposes 

the use of  variations of Poisson Regression called Hurdle model.  

 

II. RISK OF RADIATION EXPOSURE 

 Comparing the acute exposure experienced by atomic bomb survivors with the low dose rate exposures 

experienced gradually over time due to occupational, environmental or natural background circumstances is 

now frequently done. Wide ranges of risk estimates have been reported with some significantly lower than the 
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estimate of cancer incidence among atomic bomb survivors and some higher but not significantly so. The 

differences are in large part related to chance, different dose ranges, different lengths of follow-up, differences 

in ethnicity and background cancer rates, and biases and confounding that play a much more important role 

when studying populations exposed to low doses. 

 

 Manmade verses Natural Resources radiation exposure: Whether it is taken from external exposure or 

from intakes of radioactive material . Depending on dose: The lower the dose, the lower the risk but the lower 

the dose, the greater the difficulty in detecting any increase in the number of cancers possibly attributable to 

radiation. In higher doses the risk is also higher but the chases of detecting the cancer are also more. At doses 

below 100 millisieverts (mSv), it is not possible to distinguish cancer due to radiation from that of the natural 

variation of the disease among the general population. 

 

 Radiation epidemiology has revealed that ' a single exposure can increase the lifetime risk of cancer; 

the young are more susceptible than the old (although not markedly so); females are more susceptible than 

males; the foetus is not more susceptible than the child; genetic (heritable) effects have not been found in 

humans to date; risks differ by organ or tissue and some cancers have not been convincingly increased after 

exposure. Many small exposures over years can significantly decrease lifetime.' 

 Epidemiologists use the term “risk” in two different ways to describe the associations that are noted in 

data. Relative risk is the ratio of the rate of disease among groups having some risk factor, such as radiation, 

divided by the rate among a group not having that factor. Absolute risk is the simple rate of disease among a 

population and Excess absolute risk (EAR) is the difference between two absolute risks.[2] 

 

 
Figure 1. Modelling of data 

 

III. RISK MODELS 
 Poisson regression methods for grouped survival data were used to describe the dependence of risk on 

radiation dose and to evaluate the variation of the dose response with respect to city, sex, age at exposure, and 

attained age. Significance tests and confidence intervals (CI) were based on likelihood ratio statistics. The 

results were considered statistically significant when the two-sided P < 0.05. The models used here are as 

follows. 
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 Excess Relative Risk (ERR) model:         

 λ0 (c, s, a, b) [1+ERR (d, e, s, a)]                                     (1) 

 Excess Absolute Risk (EAR) model:   

        λ0 (c, s, a, b) [1+EAR (d, e, s, a)]                                                (2)  

 

 Where λ0 is the baseline or background mortality rate at zero dose, depending on city (c), sex (s), birth 

year (b), and attained age (a).  λ0 was modelled by stratification for the ERR model and by parametric function 

involving relevant factors for the EAR model. ERR or EAR depends on radiation dose (d) and, if necessary, 

effect modification by sex, age at exposure (e), and attained age. 

 Effect modification was described using multiplicative-function models as follows: 

 

       (e,s,a) = exp(.e+.ln(a))(1+.s)                                                                                  (3) 

 

 where ,  and  were the coefficients for effect modification by age at exposure, attained age, and sex, 

respectively. The term that includes sex (s = 1 for men and s = -1 for women) as a modifier allows the 1 

parameter to represent sex-averaged risk estimates.[1] Therefore, ERR and EAR models were, respectively, 

 

  0(c,s,b,a)[1+1d.exp(e+.ln(a)) (1+s)]                                                                           (4)  

 

  0(c,s,b,a)[1d.exp(e+ln(a)) (1+s)]                                                                               (5) 

 

3.1 Strengths 

 This study has several strengths, including a large population not pre-selected for existing disease or 

occupational fitness, a wide but relatively low dose range (0->3 Gy) and well characterized doses, a 53 year 

follow-up with virtually complete mortality ascertainment, and corroborative evidence from more detailed 

clinical and biomarker studies of risk of circulatory disease on a random subsample of the cohort. The analyses 

of radiation dose with stroke and heart disease mortality showed that the association is reasonably robust with 

respect to confounding by lifestyle, sociodemographic, or other health factors or misdiagnosis. 

 

3.2 Limitations 

 The model also has several limitations and uncertainties. Ascertainment of circulatory disease from 

death certificates is of limited diagnostic accuracy and represents only a fraction of cases of incident disease.  

Some selection effects due to dose related early mortality from the bombs may have occurred, although the 

impact of these is likely to be small. Other limitations include unclear dose-response effects below about 0.5 Gy, 

inadequate information about possible biological mechanisms, and uncertainty about the generalisability of 

these results to Western populations because of differences in genetic factors, dietary and lifestyle risk factors, 

and baseline levels of risk for stroke and heart disease. 

 

 Another problem is excess zeros. In this situation, the distribution has more zeros than would be 

expected from a Poisson distribution. Often this is caused by two processes creating the data set, one of the 

processes having an expected count of zero. Thus model is always overly restrictive when it comes to estimating 

features of the population other than the mean, such as the variance or the probability of single outcomes.[1] 

 

3.3 Model for Group Data 

 The data layout consists of a table with J rows (j = 1. . . J) And K columns (k = 1. . . K). Within the cell 

formed by the intersection of the j
th

 row and k
th 

column, one records the number of incident cases or deaths djk 

and the person-years denominators njk where j is used for indexing J age intervals and k for representing one of 

K exposure categories. 

Observed rate         jk=djk/njk        (6)  
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   djk =No of deaths,  njk = person years 

 This is considered as an estimate of a true rate λjk that could be known exactly only if an infinite 

amount of observation time were available. The goal of the statistical analysis is to uncover the basic structure in 

the underlying rates λjk, and in particular, to disentangle the separate effects of age and exposure.[3] 

 Various possible structures for the rates satisfy the requirement of consistency. In particular, it holds if 

the effect of exposure at level k is to add a constant amount βk    to the age-specific rates λj1 , for individuals in 

the baseline or non-exposed category (k = 1).The model equation is : 

 

             jk = αj + βk                                                                                                                (7)  

                                                                         

Where αj = λj1 and βk (β1 = 0) are parameters to be estimated from the data. If additivity does not hold on the 

original scale of measurement, it may hold for some transformation of the rates. The log transform 

             

 log λjk = αj+ βk                                                                                                                                                                    (8)                                        

yields the multiplicative model where   

            

  λjk = Ѳj * ᴪk                                                                                                                                                                            (9)                                                                                                 

  

here,  αj = log(Ѳj) , βk = log(ᴪk) , ᴪk = Relative risk of decease at exposure level k. 

  

 The excess (additive) and relative (multiplicative) risk models are ubiquitous models to describe the 

relationship between the effects of exposure and the effects of age and other factors that may account for 

background or spontaneous cases. These have been used to describe different aspects of radiation carcinogenesis 

in human populations (Committee on the Biological Effects of Ionizing Radiation, 1980).[2]. Due to the sharp 

rise in background incidence with age, relative risk estimates derived from current data generally predict a 

greater lifetime radiation risk than do the estimates of additive effect.[3] 

 

3.4 Multiplicative Model for Rate 

 The basic data consist of the counts of deaths djk and the person-years denominators nik in each cell, 

together with p-dimensional row vectors xjk = (xjk1, . . . , xjkp )) of regression variables . These latter may 

represent either qualitative or quantitative effects of the exposures on the stratum-specific rates, interactions 

among the exposures and interactions between exposure variables and stratification (nuisance) variables. 

 A general form of the multiplicative model is: 

 

            log λjk = j+ xjk *β                                                                                                     (10)   

                            

 where the λjk are the unknown true disease rates, the j are nuisance parameters specifying the effects of 

age and other stratification variables, and  β= (β1,β2,...,βp)
T
 is a p-dimensional column vector of regression 

coefficients that describe the effects of primary interest. An important feature of this model is that the disease 

rates depend on the exposures only through the quantity αj+ xjk *β, which is known as the linear predictor. If the 

regression variables xjk depend only on the exposure category k and not on j, above equation specifies a purely 

multiplicative relationship such that the ratio of disease rates λjk/λjk', for two exposure levels k and k', namely 

exp {(xk - xk')β), is constant over the strata.  

 

3.5 Additive Model for Risk 

 The limitation of multiplicative model is that when applied with quantitative exposure variables, it 

leads to relative risk functions that increase exponentially with increasing exposure: RR(x) = exp(xβ). This need 

not be applicable to different diseases and thus one needs to apply suitable transform. Many of the quantitative 

dose-response relations actually observed in cancer epidemiology approximate a power relationship of the form 
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   𝑅𝑅(𝑥)  =  (𝑥 +  𝑥0)^𝛽                                                                                                                                                          (11)       

                               

 This relative risk function may be approximated by first transforming the dose to z = log (x + x0) and 

then fitting the multiplicative model in the form 

  

 log( λjk) = αj+ zk*β =αj+ log(xk+x0)*β                                                                                 (12)    

                                    

 The choice xo= 1 is not uncommon as a 'starter' dose since it yields the usual RR(x) = 1 at the baseline 

level x = 0. xo may also be treated as an unknown parameter and the best fitting value, found by trial and error 

or some other more systematic technique. Certain formulations of multistage theory and other more general 

considerations lead to relative risk functions that are linear or quadratic in measured exposures, for example    

                                                                              

  RR(x) = 1+βx or RR(x) = 1 + βk +𝑥2                                                                                 (13)  
                                             

 These are special cases of a general class of models of the form 

    

λjk  = exp (αj){l + xjk}β                                                                                                         (14) 

                           

 One drawback of these is that the range of the β parameters is necessarily restricted by the requirement 

that xjk*β > -1 for all values of xjk, since negative relative risks would otherwise result. This suggests that, 

wherever possible, the regression variables xjk be coded so that they have positive coefficients.  

 

 As usually happens for models in which there is a range restriction on the parameters, the log-

likelihood function is skewed and not at all like the quadratic, symmetric log-likelihood of the approximating 

normal distribution. Estimates of the parameters may be unstable, and standard errors that are determined from 

the usual likelihood calculations may be unhelpful in assessing the degree of uncertainty. With suitable 

transformation, we fit the additive relative risk model to Poisson rates and thus obtain a family of general 

relative risk modes which is given by 

 

   λjk = exp (αj) r( xjk , β)                                                                                                           (15) 

 

 where the relative risk function is specified by the power relation 

     

                  log r (xjk*β) = (1+ xjk*β)^/     !=0 

                log r (xjk*β) =log(1+ xjk*β)         =0                                                                                (16) 

 

 This yields the additive relative risk model at  = 0 and the standard multiplicative model at  = 1.[3] 

 

IV. PROPOSED MODEL 
4. 1 Poisson Regression Model 

The typical Poisson regression model expresses the natural logarithm of the event or outcome of 

interest as a linear function of a set of predictors. The dependent variable is a count of the occurrences of interest 

e.g. the number of cases of a disease that occur over a period of follow-up. Typically, one can estimate a rate 

ratio associated with a given predictor or exposure.  A measure of the goodness of fit of the Poisson regression 

model is obtained by using the deviance statistic of a base-line model against a fuller model. 

When the response variable is in the form of a count and for rare events the Poisson distribution 

(rather than the Normal) is more appropriate since the Poisson mean > 0. So the logarithm of the response 

variable is linked to a linear function of explanatory variables such that 

 

ln(Y)= β0  + β1 Χ1 + β2Χ2 …           (17)                                                                           
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The basic Poisson regression model relates the probability function of a dependent variable yi (also referred 

to as regress and, endogenous, or dependent variable) to a vector of independent variables xi (also referred to as 

repressors, exogenous, or independent variable).[9] The standard uni-variates Poisson regression model makes 

the following assumptions: 

 Logarithm of the disease rate changes linearly with equal increment increases in the exposure variable. 

 Changes in the rate from combined effects of different exposures or risk factors are multiplicative. 

 At each level of the covariates the number of cases has variance equal to the mean. 

 Observations are independent.  

This paper uses the Poisson Model with variation to obtain the risk coefficients. This section describes 

the statistical models used in estimation of risk. These risk estimates are of prime interest for the epidemiologist. 

Moreover, the coefficients obtained for risk, depend on the statistical model used for fitting the data. Therefore 

the type of model used for fitting the data determines the risk estimates and their accuracy. 

 

 Poisson regression is appropriate when the conditional distributions of Y are expected to be Poisson 

distributions. This often happens when you are trying to regress on count data. In fact, its applicability extends 

well beyond the traditional domain of count data. The Poisson regression model can be used for any constant 

elasticity mean function, whether the dependent variable is a count or continuous, and there are good reasons 

why it should be preferred over the more common log transformation of the dependent variable. 

The simplicity of the Poisson regression model, an asset when modelling the mean, turns them into a liability, 

and more elaborate models are needed. There are two common difficulties in Poisson regression and they are 

both caused by heterogeneity in the data. 

1. Over dispersion- This occurs when the variance of the fitted model is larger than what is expected by the 

assumptions (the mean and the variance are equal) of the Poisson model. Over dispersion is typically caused by 

a Poisson regression that is missing an important independent variable or by data being collected in clusters (like 

collecting data inside family units). 

2. The second problem, also caused by heterogeneity, is excess zeros. In this situation, the distribution has more 
zeros than would be expected from a Poisson distribution. Often this is caused by two processes creating the 

data set, one of the processes having an expected count of zero. Poisson model is always overly restrictive when 

it comes to estimating features of the population other than the mean, such as the variance or the probability of 

single outcomes. 

 

4.2 Hurdle Model  

To overcome the limitations of Poisson Hurdles Model is used 

 

Figure 2.  Risk estimation Model 
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 Hurdles model (each assuming either the Poisson or negative binomial distribution of the outcome) has 

been developed to cope with zero-inflated outcome data with over-dispersion (negative binomial) or without 

(Poisson distribution). Hurdle model deals with the high occurrence of zeros in the observed data, 

 

     A hurdle model is a modified count model in which there are two processes, one generating the zeros 

and one generating the positive values. The two models are not constrained to be the same. The concept 

underlying the hurdle model is that a binomial probability model governs the binary outcome of whether a count 

variable has a zero or a positive value. If the value is positive, the "hurdle is crossed," and the conditional 

distribution of the positive values is governed by a zero-truncated count model. 

More formally, the hurdle model combines a count data model 
count

(y; x, ) (that is left-truncated at y = 1) and 

a zero hurdle model 
zero

(y; x,  ) (right censored at y = 1). 

 

 

          (18) 

 

 

The model parameters ,  and potentially one or two dispersion parameters  (if   or both are 

negative binomial densities) are estimated by Maximum Likelihood, where specification of the likelihood has 

the advantage that the count and the hurdle component can be maximized separately . Since the risk estimates 

are exponential for doses groups, we would apply log transform on dose variables for obtaining the linear 

relationship.[9] 

 

4.3 Comparison of hurdle with Poisson regression 

The models  are compared by applying Vuong test. The Vuong test shows that the hurdles model  

provides a better fit than Poisson regression model. From the comparison of AIC values it is observed that 

hurdles model provides better fit. 

Table 1. Odds ratios of hurdle model  

Age 

Categories 
Odds Ratio 

Agexcat8    4.2799616 

Agexcat9    5.5625905 

Agexcat10    7.4448636 

Agexcat11 10.1254675 

Agexcat12 10.2122343 

Agexcat13 10.6221722 

Agexcat14 10.1927220 

Agexcat15    6.8081283 

s2    0.6887824 
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Table 2. Comparison of Models 

Model  AIC 

Multiplicative Poisson 

Additive Poisson 

Additive hurdle 

    20687.0 

    20686.6 

    20686.2 

 

V. CONCLUSION AND FUTURE WORK 
 Poisson regression has various limitations. There are several alternative models like Negative Binomial 

Regression and Zero-inflated Poisson Regression to fit the data to the model. We developed Hurdles model as 

an alternative to Poisson model for risk estimation and observed that it provides a better fit as compared to 

Poisson model.  There are other models like Negative Binomial and ZIP to cope up with the problem of excess 

zeros and over dispersion. Future work includes fitting data to these models and comparing the model 

parameters for obtaining the best fit of data. 
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