
International Journal of Engineering Research and Development

e-ISSN: 2278-067X, p-ISSN: 2278-800X, www.ijerd.com

Volume 10, Issue 3 (March 2014), PP.18-22

18

A Study on Android development kits and the ‘Phone Gap’

Framework

Sabyasachi Patra
Mukesh Patel school of Technology and Management, Computer science, Mumbai, India

Abstract: - The Android platform is a new generation of a smart mobile platform launched by Google. It is

open-sourced and is based on Linux so that it developers can use it freely for development. It provides an easy-

to-use development kit (the SDK) developed on the Android OS. There are different ways to go about Android

programming right from hardware-oriented programming techniques to platform-independent ones. The paper

is about various programming environments within the Android paradigm. It deals with their characteristics,

advantages and differences between them.

Keywords: - Android, Phone Gap, Web Application, SDK, NDK

I. INTRODUCTION
 Android software development is the process by which new applications are created for the Android

operating system. Applications are usually developed in the Java programming language using the Android

Software Development Kit. There are many environments to program an Android app and every single

environment has its advantages and disadvantages.

Android Development Kit:

 Software Development Kit

 Native Development Kit

II. ANDROID SDK
 The most common and obvious approach of programming Android-Apps is the Android SDK

(Software Development Kit) by Google. It provides all the functionality to develop any kind of Android

Application. We use the Eclipse IDE with the ADT (Android Development Kit) for programming in the SDK.

The Android SDK is an approach that is suited for Java programmers, who want to develop applications

exclusively for Android devices, and for every programmer with knowledge of object oriented programming or

the time and motivation to learn this paradigm and the Java language. The SDK is essentially freeware, easy to

install and allows developers to code using various API’s. It provides you the libraries and developer tools

necessary to build, test, and debug apps for Android. [1][2]

III. NDK
 The Android NDK (Native Development Kit) is a companion tool or a toolset to the Android SDK that

lets you build performance-critical portions of your apps in native code. It provides headers and libraries that

allow you to build activities, handle user input, use hardware sensors, access application resources, and more,

when programming in C or C++. [4][6] If we use the NDK and implement parts of the application in native code,

the applications are still packaged into .apk file and they still run inside of a virtual machine on the device so

that the fundamental Android application model does not change. It can also be defined as a bundle of tools,

libraries and documentation that can be used to link in native C/C++ libraries into your Android Java projects. It

provides you with everything you need to link your own C/C++ libraries to your apps, as well as commonly-

used system libraries. [5]

 Basically, this is the means by which parts of the Android application can be developed using code

other than Java. This is possible through the Android NDK, which is available for three platforms: Windows,

Mac OS X and Linux 32/64-bit (x86). [7]

 We need to balance the NDK’s benefits against its drawbacks. Typical good candidates for the NDK

are self-contained, CPU-intensive operations that don't allocate much memory, such as signal processing,

physics simulation, and so on. Another area to warrant such tweaks is support for gaming and physics-based

applications. When examining whether or not to develop in native code, we need to think about the requirements

of the particular application and see if the Android framework APIs provide the functionality that is needed.

A Study on Android development kits and the ‘Phone Gap’ Framework

19

Required development tools for NDK:

• For all development platforms, GNU Make 3.81 or later is required. Earlier versions of GNU Make

might work but have not been tested.

• A recent version of ‘awk’ (either ‘GNU Awk’) is also required.

• For Windows, Cygwin 1.7 or higher is required. The NDK will not work with Cygwin 1.5 installations.

 The NDK includes a set of ‘cross-toolchains’ (compilers, linkers, etc.) that can generate native ARM

binaries on Linux, OS X, and Windows (with Cygwin) platforms.

 It provides a set of system headers for stable native APIs that are guaranteed to be supported in all later

releases of the platform:

 libc (C library) headers

 libm (math library) headers

 JNI interface headers

 libz (Zlib compression) headers

 liblog (Android logging) header

 OpenGL ES 1.1 and OpenGL ES 2.0 (3D graphics libraries) headers

 libjnigraphics (Pixel buffer access) header (for Android 2.2 and above).

 A Minimal set of headers for C++ support

 OpenSL ES native audio libraries

 Android native application APIS

Advantages and uses of NDK:

 The use of native code with the help of android NDK is usually implemented for improving speed of

performance.

 It is also intended to support the reuse of existing code and is a way to embed native libraries into an

application package file (.apk) that can be deployed on Android devices.

 Apps can be written using the Android framework and then the JNI (Java Native Interface) can be used to

access the APIs provided by the Android NDK. The JNI enables code running in a Java Virtual Machine

to call libraries written in other languages, such as C. This technique allows us to take advantage of the

convenience of the Android framework, but still allows us to write native code when necessary.

 Within an application, activity lifecycle call-backs such as onCreate(), onPause() and onResume() should

be handled in native code. Applications that use such native activities must be run on Android 2.3 (API

Level 9) or later as certain features of the Android framework will not be available in previous versions

of android.

There are two main reasons to consider using the Android NDK

 Performance

 Porting/Cross-platform.

For performance, the NDK can provide high-performance operations for your application if it's truly

processor bound. That is, the application algorithms are tapping into all of the device's processing power

within the Dalvik VM so that the code may see performance benefits from running natively.

 Thus the native code can be used to optimize the application for speed especially when bit/byte

operations are used in the code, like when we need to do compression/decompression of image files etc.

Hence most games use the native C code libraries for 2D / 3d graphics, input, sound etc. [7]

 Running native code is complicated by the fact that Android uses a non-standard C library (libc, known

as Bionic). The graphics library that Android uses to arbitrate and control access to the device is called

the Skia Graphics Library (SGL), and it has been released under an open source license. Skia has back -

ends for both win32 and ‘Unix’, thus allowing the development of cross-platform applications. [8]

 NDK can be used to leverage existing code that is already in C or C++. Here, using the NDK could

simplify the application development, at the same time allowing for shared code with other platforms, as

well as generally helping avoid maintaining parallel codebases in multiple programming languages. This

perk is often leveraged with applications that target multiple operating systems using OpenGL ES.

Compiling and deploying NDK sample applications (The first step to NDK Development):

1. Open a command-line prompt (or Cygwin prompt on Windows)

2. Go to hello-jni sample directory inside the Android NDK. All the following steps have to performed

from this directory: $ cd $ANDROID_NDK/samples/hello-jni

A Study on Android development kits and the ‘Phone Gap’ Framework

20

3. Create Ant build file and all related configuration files automatically using android command

(android.bat on Windows). These files describe how to compile and package an Android application:

android update project –p .

4. Compile, package, and install the final ‘HelloJni’ APK (an Android application package). All these steps

can be performed in one command, thanks to Ant build automation tool. Among other things, Ant runs

‘javac’ to compile Java code, AAPT to package the application with its resources, and finally ADB to

deploy it on the development device. Following is only a partial extract of the output: $ ant install

Fig.1: Cygwin Prompt on Windows

IV. PHONEGAP
 To develop an application with Phone Gap there has to be a Software Development Kit (SDK) that fits

the end device because Phone Gap can’t run stand-alone. It grants access to native device APIs. It is a good

choice for Web Application developers who want independence from a web server and/or want to distribute

their application. ‘PhoneGap’ currently supports development for the operating systems Apple iOS, Google

Android, Microsoft Windows Phone (7 and 8) and Nokia Symbian OS. It uses HTML5 and CSS3 for visual

rendering and JavaScript for the logic. [3]

 Developing apps for multiple mobile platform needs a resource too many and a developer needs a

firsthand knowledge of multiple IDEs and languages such as C++, Java, Objective C, etc. Cross-platform

mobile application development is a fast and efficient way to make available an application on all mobile

technologies with limited added cost and software resources. The main challenge in cross-platform mobile

application development is the OS fragmentation. The trend of increased fragmentation coincides with the

growing number of mobile platforms. First, there were BlackBerry, Symbian and Bada smartphones, then came

the powerful iPhone and Android platforms, HP came with WebOS and then Microsoft introduced the Windows

Phone. Now Intel, Samsung and various other companies under the open source alliance have forged a new

mobile OS called Tizen which comes out in 2014 on selected devices. This means that companies have to keep

launching new products to make their presence felt on all mobile platforms.

 Different programming languages are required for different mobile platforms, so Mobile OS

fragmentation is the worst and most diverse fragmentation of all. This adds a sizable technical challenge to

launching mobile applications on all mobile platforms. There are also a few other challenges for the developer

like consistent user experience across all platforms. [3][4]

 Phone Gap is a framework that uses web technology to realize native mobile application, such as iPhone

or Android

 It uses HTML, CSS, JavaScript technology with native characters like Camera, Media.

 It is the only open source frame to support seven platforms, which provides many interfaces to support

native API through the calling of JavaScript.

 The user interface of the applications are made using HTML and CSS while the backend coding or the

calculations can be called using JavaScript for interactivity, dynamism, and interaction with native-OS

functionality.

 The final output is one that has features of both a web application and a native application. Certain

features, such as Image Capture, NFC or Android Open-Accessory, may be implemented natively since

there is currently no way to do this in JavaScript.

 The application logic and the UI are implemented using web technologies to allow for a consistent and

unique user experience across devices.

A Study on Android development kits and the ‘Phone Gap’ Framework

21

Fig.2: The role of PhoneGap

V. WEB APPLICATIONS (HYBRID)
 These are applications that run on browsers. The application itself and its data are usually stored and

mainly executed on a webserver. The user starts the ‘WebApp’ by sending a HTTP-request via a browser to the

webserver where the application is stored. The webserver then generates or subsequently loads the HTML

source code of the website and sends it back to the browser. Then the user is able to interact with the graphical

user interface (GUI) of the ‘WebApp’. It is represented by a website which runs in a browser. It is platform

independent and written in web-based languages. It runs on mobile devices and also on every other device

which have access to the internet (if the app is stored on a server) and a browser. These are also known as

universal Mobile Applications and are of a great use to ‘not- so – tech – savy’ normal cell phone users. It takes

user – friendliness to an all new level.

VI. A COMPARATIVE STUDY

Table I: Comparison

OPTION SDK NDK Phone Gap Web App

Installation + -- 0 0

 Support

++

+

0

+

Learn ability

-

- -

0

0

Platform

Independence

-

-

++

++

GUI creation

+

-

+

+

Potency ++ ++ 0 - -

Performance

+

++

0

-

Debugging

++

+

+

--

A Study on Android development kits and the ‘Phone Gap’ Framework

22

V. CONCLUSION
 Normal Android application development in both the industry as well as for personal purposes is done

on the Android SDK using the various API’s provided by Google and Android. The NDK is used for special

purposes whenever required, as in for Physics simulations or certain kind of games. The depth of research

carried out in the ‘Phone Gap’ and SDK programming domains are far wider as compared to the NDK

applications and usage. Therefore this paper is a start towards our study and research on the NDK model of

Android.

 The basic purpose of our paper was to carry out a comparative study and review the existing SDK

programming paradigms along with the ‘Phone Gap’ Hybrid application framework. We have also given an

overview of the NDK, its importance, its usage and an overall picture of what it takes to install and use it.

ACKNOWLEDGMENT
 This research paper is made possible through the help and support of many people both inside and

outside the domain of Engineering and Science.

 Especially, please allow me to dedicate my acknowledgment of gratitude towards our college Librarian

Mr. Pradip Das and his team. I would also like to thank Mr. Anand Gawadekar of the NMIMS IEEE Committee

due to which I could get all requested references seamlessly without any trouble and on time.

 A sincere thanks to our college and Computer Science department H.O.D. Professor Dhirendra Mishra

for allowing us to enter the invaluable field of research in our so important final year of B.Tech. Finally, I would

like to thank my parents who always encouraged me to do as much research I could do in my capacity in the final

year and extend an outside support whenever and wherever required.

REFERENCES
[1]. M. H. Amerkashi. Apptomarket. http://code.google.com/p/apptomarket/, Apr. 2013.

[2]. S. Baltes. Run anywhere. web & mobile DEVELOPER, 06:94–100,May 2013

[3]. PhoneGap. Phonegap api documentation. http://phonegap.com, Mar. 2013.

[4]. S. Ratabouil. Android NDK Beginner’s Guide. Packt Publishing, 2012.

[5]. A. Sarah, V. Graupera, and L. Lundrigan. Pro Smartphone Cross- Platform Development: iPhone,

Blackberry, Windows Mobile and Android Development and Distribution. Apress, 2010.

[6]. X. Shu, Z. Du, and R. Chen. Research on mobile location service design based on android. In 5th

International Conference on Wireless Communications, Networking and Mobile Computing, 2009.

WiCom’09, pages 1–4, 2009.

[7]. K.-C. Son and J.-Y. Lee. The method of android application speed up by using NDK. In 2011 3rd

International Conference on Awareness Science and Technology (iCAST), pages 382–385, 2011.

[8]. J. Stark. Android Apps mit HTML, CSS und JavaScript. O’Reilly, 1 edition, Dec. 2010.

[9]. C. Ullenboom. Java ist auch eine Insel - programmieren mit der Java Platform, Standard Edition 6.

Galileo Press, Bonn, 7. aufl. edition,2008

