
International Journal of Engineering Research and Development

e-ISSN: 2278-067X, p-ISSN: 2278-800X, www.ijerd.com

Volume 10, Issue 3 (March 2014), PP.35-41

35

Hardware Algorithm for Variable Precision Multiplication

on FPGA

S.Yazhinian
1
, R.Marxim Garki

 2

1,2
Assistant Professor,

Electronic and Communication Engineering,

Shri Krishnaa College of Engineering and Technology

Abstract:- A hardwired algorithm for computing the variable precision multiplication is presented in this paper.

The computation method is based on the use of a parallel multiplier of size m to compute the multiplication of

two numbers of n×m bits. These numbers are represented in the variable precision floating point format, but in

this work only the mantissas are considered; the exponents are easily obtained by adding the exponents of the

two operands to be multiplied. In this computing method of multiplication, the partial products are added as

soon as they are computed, resulting in the use of the lowest memory for intermediate results storage, (i.e. the

size of the result is of 2n×m bits). The Xilinx FPGA circuits, of Vertex-II families and bigger ones, have

interesting resources such as embedded multipliers 18×18 bits, memory blocks (Select Ram) and carry chain

paths for the carry propagation acceleration and DCM blocks (Digital Clock Manager) to generate and control

clocks. These resources have been advantageously used, in the implementation, to reduce the computation delay

compared to the solution that uses only FPGA CLBs (Configurable Logic Blocks).

Our architecture has been tailored to use these efficient resources and the resulting architecture is dedicated to

compute the multiplication of operands of sizes ranging from 1×64 bits to 64× 64 bits with a cycle time of 33 ns.

Keywords:- digital block manager, FPGA circuits, model sim PE, Intellectual Propriety, configurable logic

block.

I. INTRODUCTION
 During the last decade, the computation speed of computers has increased dramatically. This is due to

the development of VLSI technology that has enabled the integration of millions even billions of transistors on

the same chip. This huge amount of transistors has let be possible the parallelism and the pipelining of

operations at the hardware level to attain the current performances in terms of computation speed. However, the

accuracy of these calculations has not been developed since 1985, appearance date of the IEEE-754 standard [1]

which governs the floating point calculation. The computation power, offered by current processors, has led to

the emergence of applications that are very consuming arithmetic operations. However the main problem of

these computing capabilities is the accuracy of the results. In some applications, the errors can have dramatic

consequences such as the case of software used in the transport means (air, rail, etc.), in the medical teams for

patients (cancer) or in the army (defence systems etc.).They are parts of the list which is always longer by

critical applications for the life or the security. An error in these applications can be very costly, as testifies the

destruction of the Ariane 5 rocket during its first flight in 1996 [2] or can cost lives as confirms the failure of the

antimissile Patriot during the first War of the golf in 1991 [3] or the overdoses radiation administered to patients

in the National Oncology Institute of Panama in 2000 [4]. These errors are due, in great part, to the discrete

nature of the floating point representation of numbers in the standard IEEE -754, where the numbers are

represented on a fixed number of bits. Unfortunately, the accumulation of rounding errors and catastrophic

cancellation can lead quickly to results that is completely inaccurate.The variable precision computing or “multi

precision” [5], [6] allows to vary the computation accuracy according to the problem to be solved and the

required precision for the results. To overcome the numerical limitations of actual processors, several

programming languages, software dedicated libraries [7] as well as coprocessors [8] have been developed for

the variable precision computing. This kind of computing is very useful when the problems to be solved are not

very stable numerically or when a higher precision is required (i.e. greater than that available on computer).

Nevertheless, these software solutions are slow and do not meet the requirements of applications that involve in

plus of the accuracy of results, a high speed computation. To meet these requirements, a hardware

implementation is inevitable. In this work, we exploit recent developments of FPGA circuits for (Field

Programmable Gate Array) which offer re-programmability in addition of low cost development to design

architecture for the fast computing of the multi recision multiplication of two large numbers with reduced

hardware.The rest of this paper is structured as follows. Section 2 recalls the representation format of variable

precision floating point numbers. Section 3 introduces the classical multiplication principle. Section 4 describes

the Karatsuba multiplication. Section 5 presents the multiplication process of two large numbers which is the

Hardware Algorithm for Variable Precision Multiplication on FPGA

36

core of our variable precision multiplier. The architecture of our multiplier isdetailed in section 6. Section 7

summarizes the implementation results and finally a conclusion is given in section 8.

II. MULTIPLE PRECISION
 Although the term “multiple precision” brings to mind applications such as determining π to billions of

digits, most applications of high-precision arithmetic require only a few tens of digits, rather than hundreds or

thousands. As an example, consider the Bessel function J1(x) for large |x| (up to 200 to 300). Of course, many

subroutine libraries include J1(x), but for many functions represented by similar formulas, no such libraries are

available. For small values of x, we can use the convergent series (1) directly. This series is easy to understand

and compute, but it becomes unstable for large |x|. For well-studied functions, such as J1(x), algorithms suited

for different ranges of arguments abound in the literature. For J1(x), for example, there is a well-known

asymptotic series in |x|–1 that is stable for large x, as well as a backward recurrence relation that bridges the gap

between the formulas for different ranges. A library routine for J1(x) would include several different formulas

and would select the best according to |x|. To do the same for less-commonplace functions might require

mathematical research and extensive testing. But if we merely require a few (or a few thousand) values for small

and moderate |x|, it might be more cost-effective to code just the power series, using multiple-precision

arithmetic to control the instability. This brute-force method is often used to check library routines. In this

article, we evaluate J1(x) at x = 35.3 by summing the power series. Figure 1 uses Fortran 90 and 53-bit double

precision on a 32-bit computer to sum the series. I have left the program in somewhat inefficient form so that it

resembles the power series. Obviously, tuning the code for speed would entail replacing (–1)**K * X**(2*K+1)

with TERM = –TERM * XSQ / (K*(K+1)). The program prints out the partial sums every few steps to exhibit

the growing instability. Because the final result is about 15 orders of magnitude less than some of the partial

sums, we can’t have much confidence in any of that result’s digits.

III. VARIABLE PRECISION REPRESENTATION OF NUMBERS IN FLOATING

POINT ARITHMETIC
 In variable precision arithmetic, two representation formats of numbers are used: the fixed-point

representation and the floating point representation. This later was chosen to be used in our application as it

allows representing more numbers and has larger dynamic than the fixed-point representation. This format is

shown on figure 1. It consists of an exponent (E), a bit sign (S), a type (T), a length of the mantissa (L) and a

mantissa (M) which includes (L+1) words (M(0) to M(L)). The exponent has a fixed length and is represented in

2’complement format. The sign bit is equal to zero if the number is positive and equal to one if the number is

negative. The type indicates whether the number is infinite, zero or not a number. The length specifies the

number of m bits words in the mantissa. The words of the mantissa are stored from least significant word M (0)

to the most significant word M (L). The mantissa is normalized between 1/2 and 1.

IV. THE CLASSICAL MULTIPLICATION
 The simplest multiplication algorithm is the one used when we do a multiplication “by hand”: multiply

each digit of one operand by every digit of the other operand then do the appropriate shifts and finally add all

the partial products.

 In this "manual" method, we begin by computing all the partial products before adding. In the

"computer" version, additions are made progressively to avoid the unnecessary memorization of the n numbers

of (n+1) digits. Contrary, if we do not have an n×m size multiplier (for large operands), the complexity will

increase as the multiplication of the operand by a digit cannot be performed in one operation. In this case, the

operands are subdivided into several words which sizes are equal to the data path size which is equal to m bits,

then the multiplication is done according to the concept illustrated on the figure 2.

Hardware Algorithm for Variable Precision Multiplication on FPGA

37

 In this method, the operands size is supposed equal to n digits of m bits and the computation of a partial

product, which is the multiplication of one operand by a digit of the other operand, requires n multiplications of

(m×m) bits and (n-1) additions of m bits. Hence the total number of operations, to carry out a multiplication of

two operands of (n×m) bits is equal to n
2
 multiplications of (m×m) bits and [n×(n-1)+2n] additions of m bits.

 Nevertheless, this multiplication method, which consists in computing the partial products then storing

them in a memory and after do the final addition, is very costly in terms of memory, since all the partial

products must be stored. For a multiplication of two numbers of n digits of m bits, the memory required to store

all the partial products is n
2
×(m+1) bits. For numbers represented on 512×64 bits length, the memory required to

store all the partial products is about 17 Mega bits.

V. KARATSUBA MULTIPLICATION
 The Karatsuba algorithm is a recursive algorithm introduced by two Russian mathematicians Karatsuba

and of man in 1962. This algorithm is based on the splitting of the multiplier and the multiplicand into two parts:

the least significant AL and BL and the most significant AH and BH.

A = AL + 2n/2 AH, B = BL+2n/2BH,

Then the product is as follows:

A×B=AHBH2n+(AHBL+ALBH)2n/2+A

LBL

(1)

 1

As we can see this method needs 4×n/2-bit multiplications and 3×n-bit additions.

In 1963 A. Karatsuba and Y. Ofman described a divide and conquer multiplication algorithm [9]. Using

their algorithm, n-bit multiplications are divided into n/2-bit multiplications by the following equation:

_×_=AHBH(2n-2n/2)+(AH+AL)(BH+BL)2n/2+ALBL(1-2n/2) (2)

 This method needs only 3×n/2-bit multiplications, but 2×n-bit additions and 4×n/2-bit Additions. It is

clear that the Karatsuba algorithm [10] is based on the substitution of a Multiplication by two additions, since it

reduces the number of multiplications by one at the expense of two additions. Hence the performance of this

algorithm is based on the performance gap between the two operators (multiplication and addition) used to

achieve this algorithm. It was reported in [11], that the complexity in terms of execution delay of n-bit

multiplication by Karatsuba algorithm is T(n) = O(n
log 3

). This last is well lower than the complexity of the

classical algorithm which is T(n)= O(n
2
).The Karatsuba multiplication is quite often implemented in software

for variable precision computing. This algorithm is more efficient compared to the classical algorithm when the

operands size exceeds a given threshold. This threshold is often an experimentation result and depends on the

computer used and how this method is computed [12]. Despite the low algorithmic complexity degree of

Karatsuba algorithm, its hardware implementation is often complex and depends on the implementation devices

Hardware Algorithm for Variable Precision Multiplication on FPGA

38

(ASIC, FPGA, etc.).For an FPGA implementation, the Karatsuba multiplication presents a complex routing

which increases with the operand’s size, due to the successive divisions of operands to obtain sub words whose

size is equal to the multiplier size used in the architecture. This routing complexity is more important if the

ratio: operand’s size/multiplier size is larger.

VI. THE PROPOSED METHOD
 The proposed method presented in this section is simply based on the classical multiplication method

with solution to the drawback of using large memory. In this method, a memory of only (n×2m) bits is used

instead of (n
2
x2m) bits memory. This reduction is more important when the operands size is bigger. A particular

interest was granted to adapt this method to the Xilinx FPGA circuits, which contain interesting resources for

the multiplication implementation of large numbers.

Consider the multiplication R=A×B where:

 As shown on figure 3, operands A, B and the result R are split into m-bits words that correspond to the

size of both the multiplier and the memory cells used in this method.

 In the previous section, we talked about the routing complexity generated in the implementation of the

Karatsuba method and the importance of the routing delay in the implementation of complex functions on

FPGA circuits.

 To reduce this routing complexity, which sometimes cause additional delays more important than those

of the logic? Our method is based on the accumulation of products AiB j as soon as they are computed. The

algorithm for calculating the variable precision multiplication is given as follows:

Hardware Algorithm for Variable Precision Multiplication on FPGA

39

An example for computing this multiplication of two numbers of 3m bits is illustrated on the figure 4

VII. ARCHITECTURE
 The architecture implementing the method described in the previous section is presented on the figure

5. In this architecture, the operands A and B are first stored in two memories MA and MB of n words of m bits.

Each word Ai, Bj of operands A and B is addressed by its weight respectively i and j, which represents their

position in the MA and MB memories.

 Each iteration of the product AiBj, is performed by the parallel multiplier 6464 bits and the result is

on 128 bits. The 64 least significant bit (LSB) have a weight of (i+j) while the 64 most significant bits (MSB)

have a weight of (i+j+1).

 The LSB and MSB of the multiplication result are added to the results of the preceding iteration stored

in the memory result MR respectively at the addresses (i+j) and (i+j+1). The results of these two additions are

stored once again in the same addresses. This process continues until the last product An-1Bn-1.

Hardware Algorithm for Variable Precision Multiplication on FPGA

40

Figure 5. Architecture computing the multi precision multiplication

VIII. IMPLEMENTATION RESULTS
 Our architecture has been implemented using Foundation series 7.1 of Xilinx environment. All

modules constituting the architecture have been generated by using the CORE generator system. To guarantee

the correct behaviour of our architecture; this last has been simulated using Model Sim PE 6.0, then synthesized

employing the XST tool of Xilinx. It has been mapped placed and routed on the Xilinx FPGA circuit of virtex-2

family, the XC2V1000 (-5) bg575.The implementation results of this architecture are presented in the table 1.

IX. CONCLUSION
 In this paper, a hardwired method for computing the variable precision multiplication was presented. It

took its advantages of the classical multiplication method which presents a low routing complexity compared to

Karatsuba multiplication with judicious use of resources provided by FPGAs circuits to implement an

architecture offering a delay of n
2
×33 ns (for the multiplication of two numbers of n×64 bits). This multiplier is

suitable to be used as IP (Intellectual Propriety) in an embedded system for applications requiring the multi

precision computing. The operand sizes, supported by our architecture, are ranging from (64x1) bits to (64×64)

bits. Nevertheless, these sizes can be bigger insofar as we have used only 7% of SRAM resources (Table 1) and

that changing the length of the memory (i.e. n) will have influence neither on the architecture nor on its

performance.

Hardware Algorithm for Variable Precision Multiplication on FPGA

41

REFERENCES
[1]. M.Daumas, F.Dinechin, A, Tisserand, “L’arithmétique des ordinateurs”, <Réseaux et systèmes

répartis>- Calculateurs parallèles, Volume 13 n°4-5/2001.

[2]. Douglas N. Arnold, “The Explosion of the Ariane 5”,

http://www.ima.umn.edu/~arnold/disasters/ariane.html, 2000.

[3]. Douglas N. Arnold, “The Patriot Missile Failure”,

http://www.ima.umn.edu/~arnold/disasters/patriot.html , 2000.

[4]. WISE News Communique “Radiological accident in Panama”,

http://www10.antenna.nl/wise/index.html?http://www10.antenna.nl/wise/549 /5278.html, June 2001.

[5]. J.-C Bajard. ; L. Imbert; F. Rico, “Evaluation rapide des fonctions élémentaires en multi précision”,

TSI : Technique et Science Informatiques, , Vol. 20, n° 2, pp. 267-286, 2001.

[6]. M.Quercia, “Calcul multi précision”, http://pauillac.inria.fr/~quercia/papers/multiprecision.ps.gz, 2004.

[7]. D.M.Smith, “Using Multiple Precision Arithmetic”, Computing in Science &Engineering IEEE

publication, July/august 2003.

