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Abstract:- Real-time evaluation of sugar quality requires determining the content of sugar brix in the steps of 

the cane sugar process. Sugar brix is a key indicator for evaluating sugar quality. Fourier transform near infrared 

(FTNIR) spectroscopy is a simple, rapid and non-destructive technology on the analysis of material contents. In 

this study, the chemometric algorithm of parameter-combined tuning of Savitzky-Golay (SG) smoother and 

Partial Least Squares (PLS) regression was utilized for FTNIR analysis of sugar brix content in sugarcane 

clarified juice, an important intermediate product in cane sugar industry. The algorithms of combined 

optimization of SG smoother and PLS regression was achieved and the calibration models were established 

optimized by screening the expanded 540 SG smoothing modes and the 1-30 latent valuables (LV). The 

optimized models have high predictive accuracy. These results confirm that the combined optimization of SG 

smoothing modes and PLS LVs is effective in the quantitative determination of sugar brix contents in sugarcane 

clarified juice, and that the FTNIR spectroscopic technology with its chemometric algorithms have the potential 

in the analysis of cane sugar intermediates. 
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I. INTRODUCTION 
 This document is a template.  An electronic copy can be downloaded from the conference website.  For 

questions on paper guidelines, please contact the publications committee as indicated on the website.  

Information about final paper submission is available from the website. 

 Fourier transform near infrared (FTNIR) spectroscopy has the advantages of simple, rapid, non-

destructive and reagent-free measurement, multi-component simultaneous determination, etc. It is a well-

performed technology, widely applied to many fields, such as agriculture, food, environment, biomedicine [1-3]. 

In recent years, there are preliminary studies on the application of FTNIR to cane sugar industry [4-5]. Clarified 

juice is one of the important intermediate products, and sugar brix is an important indicator for evaluating sugar 

quality. Real-time evaluation of sugar quality requires determining the content of sugar brix in the steps of cane 

sugar process. Conventional chemical methods in laboratory cannot achieve the fast (or online) determination. 

Online fast detection of cane sugar intermediates is expected to be achieved by using FTNIR spectroscopic 

technology.  

 FTNIR spectroscopy with its chemometric methods owns the ability to output the perspective detection 

results in just a few minutes [6-7]. Partial Least Squares (PLS) is a common chemometric analytical algorithm 

integrating principal component analysis and multivariate linear regression. It can effectively eliminate spectral 

collinearity by creating comprehensive latent valuables. The tuning of latent valuables (LV) is the core 

procedure of PLS regression for noise reduction and information extraction [8-11]. Model predictive results will 

be reduced if LV is adopted too small or too large. Thus a reasonable LV should be selected by taking it as a 

tunable parameter. 

 As FTNIR spectroscopy includes kinds of noises generated in the detecting process. It is necessary to 

study the chemometric methods of data pretreatment to reduce spectral noises [12-14]. Savitzky-Golay (SG) 

smoother is a famous and widely used method for spectral data pretreatment [15-16]. Its major steps contain 

smoothing and differential, in which the smoothing mode is quite important for model improvement. There are 

many smoothing modes, determined by the three parameters of Order of Differential (OD), Degree of 

Polynomial (DP) and Number of Points (NP), and a specific smoothing mode outputs a corresponding 

calculation equation with its specific coefficients. Thus it is necessary to select a suitable SG smoothing mode 

and the best way to find it out is to screen it by tuning the three parameters combined with the optimization of 

PLS latent valuables. 

 The aim of this study is to determine the sugar brix content in sugarcane clarified juice by using the 

FTNIR spectrometry. Savitzky-Golay smoother is employed for data pretreatment and PLS is utilized for 

establishing calibration models. Model improvement is achieved by the combined tuning the LV of PLS and the 

parameters of SG smoother. For a wide-range optimization, we expand the tuning range of the three SG 
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smoothing parameters, and establish FTNIR calibration models with PLS regressions. The reasonable 

smoothing modes and the optimal PLS LV are simultaneously determined according to the model predictive 

results, in the combined computational algorithm platform. The selected pretreatment and modeling methods are 

examined by the prediction sample set, to have the potential of FTNIR modeling enhancement. 

 

II. EXPERIMENT AND METHODS 
A. Materials and Instruments 

Eighty-three samples of sugarcane clarified juice were collected. The sugar brix content of each sample 

was measured using the traditional chemical methods and the measured values were used as the modeling 

reference values for FTNIR quantitative analysis. The sugar brix content ranges from 14.0 to 18.4 (%Bx) for the 

83 samples. 

We detected the FTNIR spectra of clarified juice samples using Nexus 870 spectrometer (Thermo 

Nicolet Corporation) with a 2-mm pathlength quartz cuvette. The whole scanning range was 4000-10000 cm
-1

. 

An average of 32 scans per spectrum was made with a resolution of 8 cm
-1

. Because the rotation of the cuvette 

cell can effectively reduce the unevenness, and multiple scans can effectively reduce the influence of 

background noise, we designed to measure the spectra while the cuvette cell is rotating. The temperature was 

controlled at 25±1°C and the relative humidity was at 46±1% RH throughout the spectral scanning process. 

 

B. KS algorithm for Calibration-Prediction Partitioning 

FTNIR spectroscopic analysis requires partitioning the samples into calibration set and prediction set. 

Calibration samples are used for model establishment and prediction samples for model evaluation. A suitable 

partition will lead to perspective modeling results. The Kernard-Stone (KS) algorithm is common used for 

sample partitioning in the spectroscopic field [17-18]. The classic KS algorithm is aimed at selecting a 

representative subset from the sample pool (N samples). In order to ensure a uniform distribution of such a 

subset along the x matrix (spectral response), KS follows a stepwise procedure in which new selections are 

taken in regions of the space far from the samples already selected. For this purpose, the algorithm employs the 

Euclidean distances dx(j, k) between the x-vectors of each pair (j, k) of samples calculated as 

2
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For spectral data, xj(p) and xk(p) are the instrumental responses at the p-th wavelength for samples j and k, 

respectively. p denotes the number of wavelengths in the spectra. KS algorithm selects the sample that exhibits 

the largest minimum distance with respect to any sample already selected. 

 

C. Extension of Savitzky-Golay Smoother 
 SG smoother is a famous and widely-used pretreatment method to eliminate spectral noise. SG 

smoothing parameters include Order of Differential (OD), Degree of Polynomial (DP) and Number of Points 

(NP). For convenience, we denoted that the original spectral smoothing is 0th order differential. And NP is 

usually an odd number, denoted as NP=2m+1. It means that 2m+1 consecutive spectral data as a window, the 

spectral data in the window were fitted by using polynomial function whose independent variable was the serial 

number i of the spectral data, (i=0, ±1, ±2… ±m), and the polynomial coefficients were determined. Then the 

smoothing value and each order derivative value at the center point (i=0) of the window were calculated by 

using the determined polynomial coefficients. By moving the window in the whole spectral collecting region, 

the SG smoothed spectra and SG derivative spectra were obtained. 

 According to the above method, the smoothing value and each order derivative value at the center point 

of the window can be expressed as a linear combination of the measured spectral data in the window. The 

coefficients of the linear combination (i.e. smoothing coefficients) were uniquely determined by number of 

smoothing points (i.e. the number of points in the window), degree of polynomial, and order of derivatives. In 

Savitzky and Golay’s paper [15], it was set that OD=0, 1, 2, 3, 4, 5, DP＝2, 3, 4, 5, and NP=5, 7… 25 (odd 

numbers). Different combinations of parameters correspond to different smoothing modes, and further 

correspond to different smoothing coefficient sets. There were a total of 117 smoothing modes (i.e. 117 sets of 

smoothing coefficients). The appropriate smoothing mode can be selected according to different analytes.  

 However, for the spectroscopic analysis of cane sugar intermediates, if the interval between spectral 

points was very small and number of points was small, then the window was narrow and the information in the 

window for smoothing was not sufficient. In this case, it was difficult to get satisfying smoothing effect. Hence, 

it was very necessary to expand the range of NP. In this paper, NP was expanded to 5, 7… 81 (odd), DP was 

expanded to 2, 3, 4, 5, 6, and the corresponding sets of new smoothing coefficients were calculated, so that a 

total of 540 smoothing modes were obtained including the original 117 modes, which is a SG smoothing group 

with a wider application scope. 
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D. Model Indicators 
 The model evaluation indicators mainly include correlation coefficient of predication (Rp), root mean 

squared error of predication (RMSEP) and the relative RMSEP (RRMSEP), which are calculated by the 

followings, 
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where C'ip and Cip were predictive value and chemical values of the sample i in the prediction set,  C'mp and Cmp 

were the mean predicted value and mean chemical value of all samples in the prediction set, and M was the 

sample number in the prediction set. 

 The value of Rp is in coherent with RMSEP, usually that a higher Rp corresponds to a lower RMSEP. 

And, RRMSEP is always proportional to RMSEP. Thus, we take Rp and RMSEP as the main indicators for 

model optimization. 

 

III. RESULTS AND DISCUSSIONS 
The FTNIR spectra of 83 sugarcane clarified juice were showed in Fig. 1. The spectral responses 

contain the absorption information of many hydrocarbon groups in the clarified juice samples, such as sucrose, 

organic acids, amino acids and etc. In Fig. 1, we have the absorption of water molecules around 4200 cm
-1

 and 

5250 cm
-1

, and the absorption other than water appeared in the region of 5400-6000cm
-1

 and 6600-7200cm
-1

. In 

order to reduce the interference of the water molecules, it is necessary to use SG smoother to deal with data 

pretreatment in spectral modeling. 

The partitioning of calibration samples and prediction samples has to be finished before model 

establishment. Using the KS algorithm, we have the 83 clarified juice samples divided into 56 (for calibration) 

and 27 (for prediction). The mean value and the standard derivation of the measured sugar brix content for all 

calibration/prediction samples were showed in Table 1. 

 

 
Fig. 1: FTNIR spectra of 83 clarified juice samples 

 

Table 1: Mean value and standard derivation of the sugar brix content for calibration/prediction samples 

 83 clarified juice samples 

Mean value (%Bx) Standard deviation (%Bx) 

Calibration 15.69 0.45 

Prediction 15.85 0.58 

 

The optimized model parameters were selected for FTNIR analysis of clarified juice samples, by 

combining the 540 kinds of SG smoothing modes and the PLS LV tuning and optimizing, where the PLS LV 

was set changing from 1 to 30. The optimal models corresponding to each order of differential, with its 

parameters and predictive results, were showed in Table 2. In The non-smoothed full-range PLS modeling 

results was also listed in Table 2 for comparison. According to the maximum Rp (or minimum RMSEP), the 

optimal model FTNIR model of clarified juice output the predictive results of Rp=0.932, RMSEP=0.713%Bx 

and RRMSEP=4.5%, with the best smoothing mode of OD=2, DP=4 (or 5) and NP=61, and with the optimal 

LV=11. 
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It can be concluded from Table 2 that the model predictive results have high accuracy at each 

smoothing order of differential, when integrating the optimization of PLS models combined with SG smoother. 

And the modeling results are significantly superior in the PLS models with SG smoothing than without SG 

smoothing. The global optimal SG smoothing mode was 2nd order of differential and 4th (or 5th) degree of 

polynomial, and the optimal number of points was obviously larger than 25. These results indicated (1) the KS 

algorithm for sample partitioning lead to well-done calibration models; (2) the DP, NP of SG smoother and the 

LV of PLS altered in accordance with the varied OD; and (3) the NP of SG smoother is necessary to be 

expanded to the range of larger than 25. 

 

Table 2: The optimal models corresponding to each order of differential, with its parameters and 

predictive results 

 DP NP LV Rp RMSEP (%Bx) RRMSEP 

Non-smoothed － － 10 0.885 1.131 7.1% 

0th order 4, 5 53 10 0.906 0.821 5.2% 

1st order 5, 6 79 9 0.924 0.741 4.7% 

2nd order 4, 5 61 11 0.932 0.713 4.5% 

3rd order 3, 4 69 9 0.917 0.797 5.0% 

4th order 6 81 10 0.895 0.823 5.2% 

5th order 3, 4 39 11 0.905 0.804 5.1% 

 

In tuning of SG smoothing parameters, we sketch the curves showing the RMSEP corresponding to 

each order of differential and each number of points, optimized from different DP of SG smoother and different 

LV of PLS (see Fig. 2). Fig. 2 also demonstrated that a lower-than-25 NP of SG cannot reach the minimum 

values of RMSEP and the expansion of NP would output the much optimal results. 

LV of PLS is another key parameter for FTNIR modeling investigation. Fig. 3 showed the RMSEP 

values corresponding to the varied LV of PLS, optimized by SG smoothing mode, with 2nd order of differential 

and 4th or 5th degree of polynomial. The figure confirmed that the optimized LVs were larger than 10. 

We drew out the comparative relationship between the FTNIR predicted values and the chemical 

measured values of the 27 prediction samples (see Fig. 4). We have the Rp larger than 0.9 and the RRMSEP 

smaller than 5%, which verified the potential of FTNIR spectroscopic technology applying to the quantitative 

analysis of cane sugar intermediates. 

 

 
Fig. 2: RMSEP corresponding to each order of differential and each number of points 

(optimized from different DP of SG smoother and different LV of PLS) 

 



Chemometrical Optimization for Fourier Transform Near Infrared Analysis of Sugar Brix in Cane... 

21 

 
Fig. 3: RMSEP values corresponding to the varied LV of PLS (optimized by SG smoothing mode, with 

2nd order of differential and 4th or 5th degree of polynomial) 

 

 
Fig. 4: The comparative relationship between the FTNIR predicted values and the  

Chemical measured values of the prediction samples 

 

IV. CONCLUSIONS 
The chemometric algorithm combined parameter-tuning of SG smoother and PLS regression was 

utilized for FTNIR spectroscopic analysis of sugar brix contents in sugarcane clarified juice, to establish and 

screen for the optimized calibration model. KS algorithm was used smoothly and seemed much effective in the 

partition of calibration and prediction samples. The algorithms of combined optimization of SG smoother and 

PLS regression was achieved and the calibration models were optimally established by screening the expanded 

540 SG smoothing modes and the 1-30 LVs. The combined optimized calibration models have high predictive 

accuracy, and the optimized modeling results were quite appreciated. These results confirm that the expansion 

of SG parameters is quite necessary, and the combined optimization of SG smoothing modes and PLS LVs is an 

important method for the quantitative determination of sugar brix contents in sugarcane clarified juice. Our 

conclusions demonstrated that the FTNIR spectroscopic technology with its chemometric algorithms has the 

potential in the analysis of cane sugar intermediates. This rapid, non-destructive and reagent-free technology has 

practical meanings and is perspective in the online detection for cane sugar industry. 
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