Cyclic Codes of Length 2^k Over Z₂^m

Arpana Garg¹, Sucheta Dutt²

^{1,2}Department of Applied Science, PEC University of Technology, Sector – 12, Chandigarh, India.

Abstract—In this paper, the structure of cyclic codes over Z_{2^m} of length 2^k for any natural number k is studied. It is proved that cyclic codes over $R = Z_{2^m}[x] / \langle x^n - 1 \rangle$ of length $n = 2^k$ are generated by at most m elements.

Keywords- Codes, Cyclic codes, Ideals, Principal ideal Ring

I.

INTRODUCTION

Let *R* be a commutative finite ring with identity. A *linear code C* over *R* of length *n* is defined as a *R*-submodule of \mathbb{R}^n . A *cyclic code C* over *R* of length *n* is a linear code such that any cyclic shift of a codeword is also a codeword, that is, whenever $(c_1, c_2, c_3, \dots, c_n)$ is in *C* then so is $(c_n, c_1, c_2, \dots, c_{n-1})$.

Most of the work on cyclic codes over Z_4 has been done in [2,6,7]. Cyclic codes over ring Z_m are studied by Abualrub in [3] where length of code is relatively prime to *m*. Structure of Cyclic codes over Z_{p^2} of length p^e is studied in [8,12]. T.Abualrub and I.Siap give the structure of cyclic codes over rings of characteristic 2, that is, $Z_2 + uZ_2$ and $Z_2 + uZ_2 + u^2Z_2$ in [11]. In [10], Structure of cyclic codes over Z_8 is given. A class of constacyclic codes is studied by Dinh in [1] and Zhu in [13].

In this paper, we study the structure of cyclic codes of length 2^k over Z_{2^m} and prove that cyclic codes of length 2^k over Z_{2^m} are generated by at most *m* elements.

II. PRELIMINARIES

Codewords of a cyclic code of length *n* over a ring *R* can be represented by polynomials modulo $x^n - 1$. Thus any codeword $c = (c_0, c_1, c_2, ..., c_{n-1})$ can be represented by polynomial $c(x) = c_0 + c_1 x + c_2 x^2 + ... + c_{n-1} x^{n-1}$ in the ring *R*.

2.1 Definition : Define a map $\varphi: Z_{2^m}[x] / \langle x^n - 1 \rangle \rightarrow Z_2[x] / \langle x^n - 1 \rangle$ such that φ maps zero divisors in Z_{2^m} to 0; and units of Z_{2^m} to 1; and x to x.

It is easy to prove that ϕ is an epimorphism of rings.

Any polynomial $f(x) \in \mathbb{Z}_{2^m}[x] / \langle x^n - 1 \rangle$ can be represented as $f(x) = f_1(x) + 2f_2(x) + 2^2 f_3(x) + \ldots + 2^{m-1} f_m(x)$ where $f_i(x) \in \mathbb{Z}_2[x] / \langle x^n - 1 \rangle \forall i$. The image of f(x) under φ is $f_1(x)$.

2.2. Definition [9]: The content of the polynomial $f(x) = a_0 + a_1x + a_2x^2 + \ldots + a_mx^m$ where the a_i 's belong to Z_{2^m} , is

the greatest common divisor of $a_0, a_1, a_2, \dots, a_m$.

2.3. Lemma [2]: If *R* is a local ring with the unique maximal ideal *M* and $M = (a_1, a_2, ..., a_n) = \langle a \rangle$, then $M = \langle a_i \rangle$ for some i.

Consider the ring $R = Z_{2^m}[x] / \langle x^n - 1 \rangle$. Let *C* be an ideal in *R* of length 2^k over Z_{2^m} . The following lemmas can be easily proved.

2.4. Lemma: *R* is a local ring with the unique maximal ideal $M = \langle 2, x - 1 \rangle$.

2.5. Lemma: *R* is not a Principal ideal ring.

III. GENERATORS OF CYCLIC CODES OVER Z_{2^m}

We start the section with the following:

3.1. Lemma: Let C be a cyclic code of length 2^k over Z_{2^m} . If minimal degree polynomial g(x) in C is monic, then $C = \langle g(x) \rangle$.

Proof: Let $g(x) = g_0(x) + 2g_1(x) + 2^2g_3(x) + ... + 2^{m-1}g_{m-1}(x)$ such that $g_0(x) \neq 0$ and $g_i(x) \in Z_2(x) / \langle x^n - 1 \rangle$ be the minimal polynomial in *C* whose leading coefficient is a unit. Let c(x) be a polynomial in *C*, By division algorithm there exists q(x) and r(x) over Z_{2^m} such that c(x) = g(x)q(x) + r(x) where r(x) = 0 or $\deg(r(x)) < \deg(g(x))$. This implies $r(x) = c(x) - g(x)q(x) \in C$. If $r(x) \neq 0$, then $\deg(r(x)) < \deg(g(x))$ which is a contradiction to the choice of degree of g(x). Therefore r(x)=0, that is, every polynomial c(x) in *C* is multiple of g(x). Hence $C = \langle g(x) \rangle$.

3.2. Lemma: Let C be a cyclic code of length 2^k over Z_{2^m} . If g(x) is a minimal degree polynomial in C of degree 't' with leading coefficient $2^s h_1$ where $1 \le s < m$ and h_1 is an odd integer, then content of g(x) is 2^s . That is $g(x) = 2^s q_s(x)$, where $q_s(x) \in Z_{2^{m-s}}[x] / < x^n - 1 > .$

Proof: Let g(x) be a minimal degree polynomial in C of degree 't' with leading coefficient $2^{s}h_{1}$ where $1 \le s < m$ and h_{1} is an odd integer. Let $g(x) = a_{0} + a_{1}x + a_{2}x^{2} + ... + a_{t}x^{t}$ such that $a_{t} = 2^{s}h_{1}$. Now, we claim that $a_{i} \equiv 0 \pmod{2^{s}} \forall i$. Suppose this is not so. This implies there exist some j < t such that $a_{j} \neq 0 \pmod{2^{s}}$. Then $2^{m-s}g(x)$ is a non zero polynomial of degree less than degree of g(x) and belongs to C, which contradicts the minimality of g(x). Hence $a_{i} \equiv 0 \pmod{2^{s}} \forall i$ and content of g(x) is 2^{s} . Therefore $g(x) = 2^{s}q_{s}(x)$ where $q_{s}(x) \in Z_{m-s}[x]/\langle x^{n}-1 \rangle$.

3.3. Lemma: Let C be a cyclic code of length 2^k over Z_{2^m} . Let g(x) be a minimal degree polynomial in C of degree 't' with leading coefficient $2^s h_1$ where $1 \le s < m$ and h_1 be an odd integer. Let all polynomials in C have leading coefficient $2^u h$ such that $u \ge s$. Then $C = \langle g(x) \rangle = \langle 2^s q_s(x) \rangle$ where $q_s(x) \in Z_{2^{m-s}}[x] / \langle x^n - 1 \rangle$.

Proof: Since g(x) is minimal degree polynomial in C, by Lemma 3.2., content of g(x) is 2^s and $g(x) = 2^s q_s(x)$, where $q_s(x) \in Z_{2^{m-s}}[x]/\langle x^n - 1 \rangle$. We claim that all polynomials in C are multiple of $g(x) = 2^s q_s(x)$. If possible, let there exist a minimal polynomial c(x) of degree 'p' in C which is not divisible by g(x). Then there exists $r(x)(\neq 0)$ such that $c(x)=g(x) v x^{p-t} + r(x)$ where deg $r(x) < \deg(c(x))$ and v is an integer. Because C is an ideal, therefore $r(x) = c(x) - g(x) v x^{p-t} \in C$. As deg $r(x) < \deg(c(x))$ and $r(x) \in C$ we must have $2^s q_s(x) | r(x)$. This implies $2^s q_s(x) | c(x)$, which is a contradiction. Therefore all polynomials in C are multiples of $g(x) = 2^s q_s(x)$ Hence $C = \langle g(x) \rangle = \langle 2^s q_s(x) \rangle$

3.4. Lemma: Let *C* be a cyclic code of length 2^k over Z_{2^m} not containing any monic polynomial. Let g(x) be minimal degree polynomial in *C* of degree 't' with leading coefficient $2^{s_1}h_1$ where $1 \le s_1 < m$ and h_1 is an odd integer. Then $C = 2^{s_c}q_c(x), 2^{s_{c-1}}q_{c-1}(x), \dots, 2^{s_2}q_2(x), 2^{s_1}q_1(x) >$ where $0 < s_c < s_{c-1} < \dots < s_2 < s_1$ and $2^{s_i}q_i(x)$ is minimal degree polynomial in *C* among all polynomials in *C* with leading coefficient less than odd multiple of $2^{s_{i-1}}$ for $1 \le i \le c$. Moreover, $q_1(x) | q_2(x) | q_3(x) | \dots | q_c(x)$ which implies $C = <q_1(x) >$.

Proof: Now, g(x) is minimal degree polynomial in *C* with leading coefficient $2^{s_1} h_1$. By *Lemma 3.2*, content of g(x) is 2^{s_1} and therefore $g(x) = 2^{s_1} q_1(x)$. Let $c(x) \in C$. As *C* does not contain any monic polynomial, leading coefficient of c(x) is a zero divisor i.e. of the type $2^p h_p$. If leading coefficient of c(x) is greater than or equal to $2^{s_1} h_1$, then by *Lemma 3.3*. $2^{s_1} q_1(x)$ divides c(x) that is c(x) is multiple of $2^{s_1} q_1(x)$. If leading coefficient of c(x) is less than $2^{s_1} h_1$ then let $2^{s_2} q_2(x)$ be a minimal polynomial among all polynomials with leading coefficient less than $2^{s_1} h_1$. Then $s_2 < s_1$ and $deg(2^{s_2} q_2(x)) > deg(2^{s_1} q_1(x))$. Now, divide c(x) by $2^{s_2} q_2(x)$. Then there exist Q(x) and R(x) such that

$$c(x) = 2^{s_2} q_2(x)Q(x) + R(x) \tag{1}$$

where R(x) = 0 or $\deg(R(x)) < \deg(2^{s_2} q_2(x))$. If $\deg(R(x)) < \deg(2^{s_2} q_2(x))$ then leading coefficient of R(x) is greater than or equal to $2^{s_1} h_1$. Therefore R(x) is multiple of $2^{s_1} q_1(x)$ and there exist W(x) *s.t.* $R(x) = 2^{s_1} q_1(x)W(x)$ Putting this value in equation (1), we get $c(x) = 2^{s_2} q_2(x)Q(x) + 2^{s_1} q_1(x)W(x)$

Now, if code C does not contain any polynomial with leading coefficient less than $2^{s_2} h_2$ then $c(x) \in \langle 2^{s_2} q_2(x), 2^{s_1} q_1(x) \rangle$ and $C = \langle 2^{s_2} q_2(x), 2^{s_1} q_1(x) \rangle$. Otherwise choose minimal polynomial among all polynomials in C with leading coefficient less than $2^{s_2} h_2$. Let it be $2^{s_3} q_3(x)$ such that $s_3 < s_2 < s_1$.

Then $\deg(2^{s_3}q_3(x)) > \deg 2^{s_2}q_2(x) > \deg 2^{s_1}q_1(x)$. Continuing in this way, we shall get a sequence of generators $2^{s_3}q_3(x), 2^{s_4}q_4(x), \ldots$ for C. Because the sequence $\{s_i\}$ is a decreasing sequence of positive numbers, this process must come to an end in finite number of steps, say c, and we obtain that $C = \langle 2^{s_c}q_c(x), 2^{s_{c-1}}q_{c-1}(x), \ldots, 2^{s_2}q_2(x), 2^{s_1}q_1(x) \rangle$ where $0 < s_c < s_{c-1} < \ldots < s_2 < s_1$ and $2^{s_i}q_i(x)$ is minimal degree polynomial in C among all polynomials in C with leading coefficient less than odd multiple of $2^{s_{i-1}}$ for $1 \le i \le c$.

It is easy to prove that $q_1(x) | q_2(x) | q_3(x) | \dots | q_c(x)$ which implies $C \subset q_1(x) >$.

3.5.Lemma : Let *C* be a cyclic code of length 2^k over Z_{2^m} . Let $g(x) = 2^{s_1} q_1(x)$ be minimal degree polynomial in *C*. Then $C = \langle f(x), 2^{s_c} q_c(x), 2^{s_{c-1}} q_{c-1}(x), \dots 2^{s_2} q_2(x), 2^{s_1} q_1(x) \rangle$ where $0 < s_c < s_{c-1} < \dots < s_2 < s_1$ and $2^{s_i} q_i(x)$ is minimal degree polynomial in *C* among all polynomials in *C* with leading coefficient less than odd multiple of $2^{s_{i-1}}$ for $1 \le i \le c$ and f(x) is minimal degree polynomial among all monic polynomials in *C*. Moreover, $q_1(x) | q_2(x) | q_3(x) | \dots | q_c(x) | f(x)$ which implies $C \subset \langle q_1(x) \rangle$.

Proof: Suppose C is a code which contains monic polynomials. Choose a monic polynomial $f(x) = f_1(x) + 2f_2(x) + 2^2 f_3(x) + \ldots + 2^{m-1} f_m(x)$ of minimal degree 't' among all monic polynomials in C. Let S be set of all polynomials of C of degree less than t. Then leading coefficient of all polynomials in S is zero divisor, that is, of the type $2^i h_i$ for some i < m and h_i is an odd integer. Let $c(x) \in C$, by division algorithm there exist unique polynomials q(x) and r(x) such that c(x) = f(x)q(x) + r(x) (2)

where either r(x)=0 or deg(r(x))< deg(f(x)). Now, C is an ideal therefore $r(x) \in C$. If deg(r(x))< deg(f(x)) then $r(x) \in S$ Now, S does not contain any monic polynomial and therefore by Lemma 3.4. $r(x) \in < 2^{s_c} q_c(x), 2^{s_{c-1}} q_{c-1}(x), \dots, 2^{s_2} q_2(x), 2^{s_1} q_1(x) >$ Thus, there exist $w_1(x), w_2(x), \dots, w_c(x)$ such that $r(x) = 2^{s_1} q_1(x) w_1(x) + 2^{s_2} q_2(x) w_2(x) + \dots + 2^{s_c} q_c(x) w_c(x)$ Substituting this value in equation (2), we get $c(x) = f(x)q(x)2^{s_1} q_1(x)w_1(x) + 2^{s_2} q_2(x)w_2(x) + \dots + 2^{s_c} q_c(x)w_c(x)$ This implies that $c(x) \in < f(x), 2^{s_c} q_c(x), 2^{s_{c-1}} q_{c-1}(x), \dots, 2^{s_2} q_2(x), 2^{s_1} q_1(x) >$

3.6. Theorem : Cyclic Codes in R of length 2^k are generated by at most m elements.

Proof: The Theorem follows from Lemmas 3.1. to 3.5.

REFERENCES

- H.Q.Dinh, A class of constacyclic codes over the Ring $F_q + uF_q + ... + u^{k-1}F_q$ J.London math. Soc. 42 (1967) [1]. 208-216.
- T. Abualrub and R. Oehmke, "Cyclic codes of length 2^e over Z_4 " Discrete Applied Mathematics 128 (2003) 3 9. T. Abualrub. Cyclic codes and their duals over Z_m . Ann. Sci. Math. 23 (1999), no. 2, 109–118. [2].
- [3].
- A.R. Calderbank, N.J.A. Sloane, Modular and p-adic cyclic codes, Designs Codes Cryptogr. 6 (1995) 21-35. [4].
- [5]. F.J. MacWilliams, N.J.A. Sloane, The Theory of Error-Correcting Codes, Ninth impression, North-Holland, Amsterdam, 1977.
- [6]. Steven T. Dougherty, San Ling, Cyclic Codes Over Z_4 of Even Length, Designs, Codes and Cryptography, vol 39, pp 127–153, 2006
- \overline{T} . Blackford, Cyclic codes over Z_4 of oddly even length, Discrete Applied Mathematics, Vol. 128 (2003) pp. 27– [7]. 46.
- Shi Minjia, Zhu Shixin. Cyclic Codes Over The Ring Z_P² Of Length p^e. Journal Of Electronics (China), vol 25, no [8]. 5,(2008), 636-640.
- I.S.Luthar, I.B.S.Passi. Algebra volume 2 Rings, Narosa Publishing House, first edition, 2002. [9].
- Arpana Garg, Sucheta Dutt, Cyclic codes of length 2^k over Z₈, accepted, World Congress of Engineering and [10]. Technology, Beijing, China, Oct 26-28, 2012.
- [11]. T.Abualrub, I.Siap, Cyclic codes over the rings $Z_2 + uZ_2$ and $Z_2 + uZ_2 + u^2Z_2$, Design Codes and Cryptography 42 (2007) 273-287.
- H.M. Kiah, K.H. Leung, S. Ling, Cyclic codes over GR(p²,m) of length p^k, Finite Fields and Their Applications [12]. 14(2008) 834-846.
- S.Zhu, X.Kai, A Class of Constacyclic Codes Over Z_n^m Finite Fields and Their Applications 16(2010) 243-254. [13].