
International Journal of Engineering Research and Development

ISSN: 2278-067X, Volume 1, Issue 4 (June 2012), PP.44-48
www.ijerd.com

44

Fractal Image Compression Technique Using Fixed Level of

Scaling

Mallikarjuna Swamy M L
1
, Nagamani K

2

1M.Tech Student, Digital Communication Engg. R V College of Engg. Bangalore-59
2 Assistant Professor, Dept. of Telecommunication Engg. R V College of Engg. Bangalore-59

Abstract—Fractal compression is a technique for encoding images compactly. It is built on local self similarities within
the images. Image blocks are seen as rescaled and intensity transformed approximate the copies of blocks found
elsewhere in the image. In this paper the Fractal image compression technique using fixed level of scaling is proposed in
which the time of encoding process is considerably reduced. This work explains the predefined fixed level of scaling

instead of scanning the parameter(S) Space [0,1].This novel point is used to point the reasonable estimation of S and use
them in a encoding process as predefined values. The algorithm is implemented in Matlab for a standard set of images.

Keywords— Domain and Range block, Fractal, Image compression, Iterative Function System (IFS)

I. INTRODUCTION
 Fractal image compression (FIC) [1-5] is one of the recent methods of compression. It has generated much
interest due to its promise of high compression ratios and to the advantage of having very fast decompression. Another
advantage of FIC is its multi-resolution property. This method, which is based on the collage theorem [1], shows that it is
possible to code fractals images by means of some contractive transformations defining an Iterated Function System
(IFS). As natural signals do not often possess global self transformability, Jacquin [3] proposed to look for local or partial
transformability what led to the first algorithm of compression by Local Iterated Function Systems (LIFS).

 Fractal Image Compression (FIC) is expected to be a promising compression method for digital images in term
of high compression ratios and fidelity. However, due to the unacceptable encoding time, use of this compression method
is limited to areas where the encoding time is not critical. Therefore, acceleration of the encoding is indispensable to a

variety of uses many attempts were done to speeding FIC using different methods [11, 12, 13]. One of these studies is
applying Fixed level of Scaling in FIC to speeding image compression.

II. PRINCIPLE OF FRACTAL CODING
 In the encoding phase of fractal image compression, the image of size N x N is first partitioned into non

overlapping range blocks Ri , { R1 , R2 ,...Rp } of a predefined size BxB. Then, a search codebook (domain pool) is
created from the image taking all the square blocks (domain blocks) Dj , { D1 , D2 ,...Dq } of size 2Bx2B, with integer
step L in horizontal or vertical directions. To enlarge the variation, each domain is expanded with the eight basic square
block orientations by rotating 90 degrees clockwise the original and the mirror domain block. The range-domain
matching process initially consists of a shrinking operation in each domain block that averages its pixel intensities
forming a block of size BxB.

 For a given range R i , the encoder must search the domain pool BigM for best affine transformation w i , which
minimizes the distance between the image R i and the image wi (Di), (i.e. wi (Di)

≈ Ri). The distance is taken in the
luminance dimension not the spatial dimensions. Such a distance can be defined in various ways, but to simplify the
computations it is convenient to use the Root Mean Square RMS metric. For a range block with n pixels, each with
intensity ri and a decimated domain block with n pixels, each with intensity di the objective is to minimize the

quality





n

i

RisDiDiRiE
1

2)0(),(

This occurs when the partial derivatives with respect to s and o are zero. Solving the resulting equations will give the best

coefficients s and o [5].The parameters that need to be placed in the encoded bit stream are Si, Oi, index of the best
matching domain, and rotation index. The range index i can be predicted from the decoder if the range blocks are coded
sequentially. The coefficient si represents a contrast factor, with | Si |<1.0, to make sure that the transformation is
contractive in the luminance dimension, while the coefficient oi represents brightness offset.

Fractal Image Compression Technique Using Fixed Level of Scaling

45

III. THE EFFECT OF FIXED LEVEL OF SCALING, S
 The important parameter that was investigated is the predefined four fixed level of scaling s instead of scanning
the parameter(S) Space [0,1]. To do this, a large number of experiments with exhaustive search for s were performed S
=[0.45 0.60 0.82 0.96]; is the best selected values of s.

IV. THE PROPOSED ALGORITHM
1. Input a binary image, call it M.
2. Cover M with square range blocks. The total set of range blocks must cover M, without overlapping.
3. Introduce the domain blocks D; they must intersect with M. The sides of the domain blocks are twice the sides

of the range blocks.
4. Define a collection of local contractive affine transformations mapping domain block D to the range block R i.
5. For each range block, choose a corresponding domain block, symmetry and one of the best scaling value out of

four values, S =[0.45 0.60 0.82 0.96] so that the domain block looks most like the part of the image in the

range block.
6. Save the compressed data in the form of a local IFS code T()=[posi sym S O].

V. ENCODER AND DECODER
A. Encoder
 First enter the name of the image file, In the examples we use 'lena.pgm'. Then specifies the desired range
block size by setting rsize equal to the length of the side of the desired range block. Presently, rsize is set equal to 4,

which allows range blocks of size 44 . We next create the domain blocks, which are twice the size of the range

blocks, in this case 88 . In determining which mapping will need to be made from the domain blocks to the range

blocks, we will need to compare the domain blocks to the range blocks. To accurately compare these blocks, they must
be the same size. So, we do some averaging over the domain blocks which allows us to shrink the domain blocks to half
of its size in order to match the size of the range blocks.

Originally, each domain block is 88 . The averaging only takes place over each distinct block of 22

pixels within the domain block. Then the average grayscale value in each 22 block of pixels is represented in one

pixel in the scaled domain blocks, called I1. I1 is a 44 block at this point. We subtract the average of the domain
block from each entry in the domain block to account for possible darkening of the decompressed image. The resulting
scaled domain block is D.

Now, we save 8 different transformations of each domain block in an eight dimensional monster matrix called

poolI. The transformations include the original domain block, a
90 ,

180 and a
270 rotation, a horizontal flip, and

a vertical flip, as well as the transform of the domain block and a
180 rotation of the transformed domain block. We

introduce a vector s, which contains different specific scaling to transform the grayscale of the domain block to make a
better match to a range block.

At this point, 'Encoder' goes through all of the range blocks and offsets each of them by subtracting the average
of the range block from each entry in the range block. Now we can equally compare the domain to the range blocks. We
save the offset of the range blocks in o, which we will add back to the image later.

Next the program cycles through each domain block ijD and tests each symmetry that is stored in poolI, along

with the four possible gray scales for the best transformation that will map to a given range block. When the best map is

found, the location of that domain block i0 and j0, the best symmetry m0 of the domain block, the best scaling s0, and the
offset o is saved in the five dimensional matrixes. It is the entries of this matrix that determine the number of bytes
needed to store the compressed image file. Once this information is saved in a file, it is possible to compress that file
even more by applying a lossless coding algorithm. It is from the matrix, T, that the program 'decoder' can regenerate the
image.

It is important to note that each transformation from the original 88 domain is a contraction mapping

because the domain must be scaled by ½ in order to map the domain to the range. Also, the information stored in each

:),,(lk entry of T represent the coefficients of the mappings iw , i = 1,2,3,…N that make up the N local IFS mappings.

The image regenerated after all the mappings in T are applied to some seed image, is the attractor of the local IFS.

B. Decoder
In order to regenerate the attractor of the contractive transformations found, we must use the program 'decoder'

along with the saved information from 'fcomp'. First we load the correct data using the name that we saved it under in the
batch file. Then we initialize a matrix to perform the mappings on. This matrix must be the same size as the original

Fractal Image Compression Technique Using Fixed Level of Scaling

46

image. Although, in the program we initialize the seed image to all zeros, which is a uniformly gray image, choosing
another image as the seed to the local IFS will arrive at the same result.

 Depending on the block size chosen for the range blocks, one may need to vary the number of iterations applied
to the seed image in order to arrive at the attractor image. As more iteration of the IFS are applied to the image, the

clearer the attractor will become. After the nth iteration, the image produced corresponds to the nA compact set. First,

the domain blocks of the seed image must be created and rescaled to the size of the range blocks. Then using the T
matrix, the domain blocks are transformed and mapped to the range blocks. This process is repeated for each iteration.
The attractor, M, is then output to be displayed on the screen. A result contains examples of an original image, and the

consecutive images regenerated after iterating the local IFS created for that image. The quality of the attractors vary
depending on the size of the range blocks used and the error allowed in finding an appropriate transformation form
domain block to range block

VI. SIMULATION RESULTS
 Our implementation of this simple method of fractal compression produced great compression ratios.
Considering that each pixel requires 8 bits to store the values of 0 to 127, to store a 128x128 image pixel by pixel would
require 16384 bytes (around 16KB). Using 'encoder' and 'decoder' with any chosen error, to store an image of this size

with a range block size of 44 pixels only requires 5120 bytes. The compression ratio is better than 3.2:1. Of course,
increasing the range block size to 8x8 pixels improves the compression to only 1280 bytes, with a compression ratio of
approximately 12.8:1. The larger range block sizes allow higher compression ratios. The time needed to produce the
attractor image is based on how much error is allowable in the transformations. The larger the error, the quicker the
compression. The use of the image will determine the required amount of compression and image quality.

 Figure 1 is the original image in this example. Figure 2, 3, and 4 are the first through third iterations of the
fractal compression transformations with minerr = 10. Referring to table 1 we can tell that this compressed file took

about 18 minutes to complete compression for 44 pixel range block and 3.5 minutes to complete compression

for 88 pixel range block. The attractor image that is regenerated is close to the original image, but the time needed to

accomplish compression is not desirable. With a 44 pixel range block, a decent error is probably about 20or 30.
Although to compress an image with this error takes about 123.1060 seconds, if the error is greater than that, the image

quality becomes very low and blocky. For the 44 pixel range blocks, three different implementations based on a
change in the allowable error of images are in figure 2, 3, 4 and 5 with the errors, min0, are 2, 10, and 80 respectively.

Emin

Range block size 4x4 Range block size 8X8

PSNR CR Te PSNR CR Te

2 24.0705 3.2000 162.7200 20.3853 12.8 21.4200

4 24.0691 3.2000 149.9320 20.3853 12.8 21.6400

6 24.0652 3.2000 138.6690 20.3853 12.8 21.6700

8 24.0597 3.2000 129.4580 20.3853 12.8 22.2000

10 24.0528 3.2000 123.1060 20.3853 12.8 21.6300

12 24.0395 3.2000 111.7740 20.3867 12.8 20.7000

14 24.0302 3.2000 103.2560 20.3864 12.8 20.4300

16 24.0107 3.2000 95.5505 20.3859 12.8 20.1700

18 24.9993 3.2000 88.2430 20.3852 12.8 19.4700

20 23.9895 3.2000 81.9620 20.3834 12.8 19.4600

Table 1. The effect of Emin on compression performance parameters for different range size

 By looking at Figure 6 we notice that the image quality is not as high as the previous case. The reason for this

is because the range size in these images is 88 pixels. With minerr =10 to provide a comparison between image

quality and the time used to produced the compressed file, which can be found in table 1.

 Figure 1 Original Lena image Figure 2 Lena 4x4 Range blocks

Fractal Image Compression Technique Using Fixed Level of Scaling

47

 Figure 3 Lena 4x4 Range blocks Figure 4 Lena 4x4 Range blocks

 Min0=10 Iteration 2 Min0=10 Iteration 3

Figure. 5 Lena 4x4 Range blocks Figure. 6 Lena 8x8 Range blocks

Min0=10 Iteration 4 Min0=10 Iteration 4

VII. CONCLUSION
 In this work we presented a new method for fractal image compression to reduce encoding time. Centrally, our
algorithm employed predefined values for fixed level of scaling factor rather than sweeping the entire parameter space
during search. However, the searching of domain block is still carried out by global search; therefore the computation is

still very large during encoding. In the future we intend to further develop this approach using moment features for fractal
compression to minimize encoding time.

VIII. ACKNOWLEDGEMENTS
 We thank The Staff and Department of Telecommunication Engineering, RV College of Engineering,
Bangalore for providing us an opportunity and resource to carry out the work.

Fractal Image Compression Technique Using Fixed Level of Scaling

48

REFERENCES
[1]. Barnsley, Michael and Lyman P. Hurd; Fractal Image Compression, AK Peters, Ltd., 1993.

[2]. Fisher, Y., “Fractal Image Compression Theory and Application”, University of California,Institute for Nonlinear Science,

Springer-Verlay, New York, Inc, 1995

[3]. H. Miar Naimi, M. Salarian :”A Fast Fractal Image Compression Algorithm Using Predefined Values for Contrast Scaling”

WCECS 2007, October 24-26, 2007, San Francisco, USA.

[4]. Viswanath Sankaranarayanan, “Fractal Image Compression Literature Survey”, 19th October, 1998.

[5]. M. Hassaballa , M.M. Makky and Youssef B. Mahdy
+
 “Fast Fractal Image Compression Method Based Entropy” Electronic

Letters on Computer Vision and Image Analysis 5(1):30-40, 2005

[6]. H. Miar Naimi, M. Salarian, “A Fast Fractal Image Compression Algorithm Using Predefined Values for Contrast Scaling”.

Proceedings of the World Congress on Engineering and Computer Science 2007, San Francisco, USA

[7]. Richard J. Prokop and Anthony P. Reeves, “A Survey of Moment-Based Techniques For Unoccluded Object Representation

and Recognition”.

[8]. Tong, C.,”Fast Fractal Image Encoding Based on Adaptive Search”, IEEE Transaction on Image Processing, Vol.10.No.9,

2001.

[9]. Frigaard, C., "Fast Fractal 2D/3D Image Compression ", Report, Institute of Electronic Systems, Alborg University,

Laboratory of Image Analysis, 1995.

[10]. Ning, L., “Fractal Imaging”, Academic Press, 1997.

[11]. Sangwine, S. J., Horne, R., “The Color Image processing Handbook”, Champan & Hall, 1998

[12]. Dr. Loay E. George and Dr. Eman A. Al-Hilo:”Speeding-up Fractal Color Image Compression Using Moments Features

Based on Symmetry Predictor,” Eighth International Conference on Information Technology ieee2011

[13]. George, L., Al-Hilo, E., " Speeding-Up Color FIC using Isometric Process based on Moment Predictor", International

Conference on Future Computer and Communication, ICFCC2009, April 3 - 5, IEEE, ISBN: 978-1-4244-3754 (PP 607-611)

[14]. Al-Hilo, E., George, L., "Color FIC by Zero-Mean Method", 4th International Conference of Information Technology and

Multimedia (ICIMU’ 2008), pp. 631 636

[15]. Al-Hilo, E., George, L., "Speeding- up Fractal Color Image Compression Using Moments Features", Digital Image

Computing: Techniques and Applications, DICTA 2008, pp. 486-490, IEEE, ISBN: 978-0-7695-3456-5

[16]. Hartenstein, H., Ruhl, M., and Saup, D., "Region- Based Fractal Image Compression", IEEE Transaction on Image

Processing, vol.9, No.7, July 2000.

[17]. Jihee Choi, Sheng Van, and Hong Jeong “An Automated Method Based on Second Order Moment for Defect Extraction in

Photomask Images,”ICACT 2009.

