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Abstract––In this paper, we present fuzzy goal programming approach to solve chance constrained multi-objective linear 
plus linear fractional programming problem based on first order Taylor’s series approximation. The chance constraints 
with right hand parameters as random variables of known distribution are converted into equivalent deterministic 
constraints by using the given confidence levels. In the model formulation, we first determine the individual best solution 
for each objective function subject to the deterministic system constraints. The objective functions are then transformed 
into linear objective function at their individual best solution point by using first order Taylor polynomial series. We then 

construct the membership function for each linearized objective function by considering the individual best solution of 
linearized objective function as fuzzy goal and using pay-off matrix. We formulate three fuzzy goal models for solving 
the problem by minimizing the negative deviational variables. To determine the best compromise solution obtained from 
the three fuzzy goal programming models, we use Euclidean distance function. To demonstrate the proposed approach a 
numerical example is solved.  
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I. INTRODUCTION 
In the Management Science, there are numerous decision making problems where the objective functions are 

the sum of linear and linear fractional functions. This type of functions can be found in game theory, portfolio selection, 

inventory problems, agriculture based management systems. 

Multi-objective linear fractional programming problem (MOLFPP) with system constraints is a prominent tool 
for solving many practical decision making problems. MOLFPP can be extended in the field where the objective 
functions are the sum of linear and linear fractional functions and the problem is then called Multi-objective linear plus 

linear fractional programming problem (MOLPLFPP). MOLPLFPP can be converted into multi-objective linear 
programming problem (MOLPP) by using variable transformation method or Taylor’s series approximation method. 
Charnes and Cooper [1] proposed variable transformation method to solve MOLFPP. MOLFPP can be solved by Bitran and 
Noveas [2] by adopting the updating objective functions method. Kornbluth and Steuer [3] studied goal programming 
approach for solving MOLFPP. In the goal programming approach the target goals are stated precisely. But in many real 
life decision making situations, it is impossible to describe the target levels accurately due to imprecise nature of human 
judgement, availability of resources. To overcome these difficulties, Luhandjula [4] proposed linguistic variable approach 
based on fuzzy sets to solve MOLFPP. Luhandjula’s linguistic technique was modified by Dutta et al. [5]. Dutta’s 
approach was further modified by Minasian and Pop [6]. Interactive approach for solving MOLFPPs with block angular 

structure involving fuzzy numbers was studied by Sakawa and Kato [7]. With the help of variable transformation method, 
Chakraborty and Gupta [8] converted the original MOLFPP to MOLPP using fuzzy set theoretic approach. Taylor’s 
series approximation method is another approach to linearize MOLFPP to MOLPP. Guzel and Sivri [9] used Taylor’s 
series approximation method for MOLFPP. Toksarı [10] developed Taylor series approach for dealing with MOFLPP in 
fuzzy environment. In the recent past Pramanik and Dey [11] studied MOLFPP in fuzzy environment. They [12] also 
studied priority based FGP for MOLFPP.   

Teterav [13] introduced linear plus linear fractional programming problem (LPLFPP) and also introduced 
optimality criteria for it. In 1977, Schaible [14] made a note on the sum of a linear and linear fractional function. In 1993, 

Chadha [15] developed a dual of the sum of linear and linear fractional programming. Chadha’s approach was modified 
by Hirche [16]. Jain and Lachhwani [17] studied LPLFPP under fuzzy rules constraints. In the recent past, Jain et al. [18] 
introduced a solution method for MOLPLFPP containing non differential coefficients. Jain and Lachhwani [19] 
developed MOLPLFPP with homogeneous constraints using fuzzy approach. Recently, Singh et al. [20] developed an 
algorithm for solving MOLPLFPP with the help of Taylor’s series. Singh et al. [21] also studied FGP approach to solve 
MOLPLFPP. Pramanik et al. [22] developed FGP model for solving MOLPLFPP based on Taylor’s series 
approximation.  

In this paper, we consider MOLPLFPP with chance constraints. Many real situations may arise when 

constraints cannot be deterministically stated but can be stochastically described. Dantzig [23, 24] introduced stochastic 
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programming using probability theory. Chance constrained programming (CCP) [25] is one of the most important one in 
stochastic programming. In CCP, we transform the chance constraints into deterministic constraints by using known 
distribution function. 

In this article, we use Taylor’s series approximation to transform the MOLPLFPP into MOLPP.  FGP models 
are used to solve MOLPP after converting chance constraints into deterministic constraints. Lastly, the optimal solution 
with minimum Euclidean distance [26] is considered as the best compromise optimal solution.  

Rest of the paper is organized in the following way: Section II presents formulation of chance constrained 
MOLPLFPP. Section III describes the process of transforming chance constraints into equivalent deterministic 

constraints. Section IV presents linearization technique of MOLPLFPP by using Taylor polynomial series approximation. 
Section V is devoted to present proposed FGP formulation for MOLPLFPP. Section VI provides Euclidean distance 
function for identifying the best compromise optimal solution. Numerical example has been solved in Section VII to 
show the efficiency of the proposed FGP models. Finally, Section VIII presents the concluding remarks. 
 

II. FORMULATION OF CHANCE CONSTRAINED MOLPLFPP 
 The objective functions of linear plus linear fractional programming problem can be formulated as: 
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III. CONSTRUCTION OF EQUIVALENT DETERMINISTIC CONSTRAINTS 

First, we consider the chance constraints of the form:   
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Here  (.) and  -1(.) represent the distribution function and inverse of distribution function of standard normal variable 
respectively. 
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Considering the case when Pr( i

n
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 The constraints can be rewritten as:  
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 x  ≥ 0                                                                                                                                                                                  (5) 

Let us denote the deterministic system constraints (3), (4) and (5) by S. Here, S` and S are equivalent constraints. 
 

IV. LINEARIZATION OF MOLPLFPP BY FIRST ORDER TAYLOR’S SERIES 

APPROXIMATION 

Here, we find optimal solution of each objective function separately subject to the deterministic constraints. After solving 

each objective function, the ideal solution point for each objective function is taken into account. Let 
*
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1k x...,,x,x   be the ideal solution for the k-th objective function. For the linearization, we use Taylor’s series of first 

order expanding about the ideal solution point for each objective function. The series can be expressed as:                                                                
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V. FGP FORMULATION OF CHANCE CONSTRAINED MOLPLFPP 
Using (6), we obtained the transformed linear objective functions as ),x(Ẑ
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k
. 

Let )x(Ẑ
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Then the fuzzy goals appear as
B
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Now, we construct pay-off matrix of order K K by using individual best solution of the objective function.  
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VA. Construction of Membership Function 
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Ẑ)x(Ẑ
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k = 1, 2, …, K, where 
L
kẐ   is the lower tolerance limit of the k-th fuzzy goal.  

 

 

Fig. 1. Membership function of  xˆ
k
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Following Pramanik and Dey [27] and Pramanik and Roy [28] we can write  
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Here 

kd (≥ 0) is the negative deviational variable for the k-th objective goal.  

Now, the FGP models for chance constrained MOLPLFPP can be formulated as: 
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 Here, wk is the weight associated with the k- th membership function. The weight wk = L
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VI. EUCLIDEAN DISTANCE FUNCTION 

Euclidean distance function [26] can be defined as: 
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Here  x
k

 is the membership function for the k-th objective goal. This function is calculated for three proposed models 

and the solution with minimum distance L2 would be considered as best compromise optimal solution. 
  

VII. NUMERICAL EXAMPLE 

We consider the following numerical example to illustrate the proposed approach. 

Find   x (x1, x2, x3) so as to                                                                                                                                                (14) 

max Z1 = (2x1 + 3x2 - x3) +  
5+4x+2x+x

3+x+x+x

321

321

 
 

max Z2 = (-6x1 + 2x2+5x3) + 10+
5x-9x+2x

3x+x-7x

321

321
 

max Z3 = (3x1- 4x2+2x3 +15) +

 
2+x+x+x9

3+x-x2+x5-

321

321

 
subject to  
Pr(3x1 -x2 +x3 ≤ b1) ≥ 1- 1  

Pr(-6x1 +4x2 +9x3 ≤ b ) ≥ 1- 2  

Pr(11x1 -5x2 +7x3 ≥b3) ≥ 1- 3  

The means, variances and the confidence levels are given below: 
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E(b1) = 4, var(b1) = 1, 1 = 0.05 

E(b2) = 9, var(b2) = 4, 2 = 0.03 

E(b3) = 16, var(b3) = 9, 3 = 0.01     

Using (4), (5) the chance constraints involved in problem (14) are transformed into equivalent deterministic constraints 
as: 

3x1 -x2 +x3 ≤ 5.645 

-6x1 +4x2 +9x3 ≤ 12.77 

11x1 -5x2 +7x3 ≥ 9.025 

 Using Taylor’s series approximation as described in (6), the transformed linear objective functions are obtained as: 

 xẐ1 = 2.013362x1 + 2.994672x2 -1.042708x3 + 0.585820, 

 xẐ2  = -5.182459x1 + 1.097886x2+ 5x3 + 10.599995, 

 xẐ3 = 2.866745x1 - 3.839293x2 +1.95467x3 + 14.9127616,      

We obtained the individual best solutions for each linearized objective function subject to transformed deterministic 
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Using FGP models (10), (11), and (12), the obtained results are shown in Table 1. 
It is clear from the third column of the Table 1 that the FGP Model III gives the most compromise optimal solution.  
Note1. Lingo Software version 11.0 is used to solve numerical example. 
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TABLE 1  
Comparison of Optimal Solutions 

Model 

 

Membership values L2 

FGP  
Model I 1  =0.037596,  

2 =0.894745,  

3 = 1 

0.968142 

FGP  
Model II 1  =0.037596,  

2 =0.894745,  

3 = 1 

0.968142 

FGP  
Model III 1  = 0.489329,  

2  = 0.489328, 

3 = 0.489328 

0.884509 

                       

VIII. CONCLUSIONS 
In this paper, chance constrained multi-objective linear plus linear fractional programming problem with 

random variables is presented. To transform the fractional objectives into linear forms first order Taylor’s series 
approximation is used. Three FGP models are presented to illustrate the proposed approach.  For the future research, the 

proposed approach can be extended to multi-objective linear plus linear fractional programming problem with fuzzy 
parameters. The proposed approach can also be used for solving bi-level as well as multilevel linear plus linear fractional 
programming problem with crisp and fuzzy parameters.  
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