An analysis of work related stress factor in selected industries in Kerala, India

K. Satheesh Kumar¹* and Dr. G. Madhu²

¹ Department of Safety and Fire Engineering, Cochin University of Science and Technology, Kerala, India

Abstract— The management standards of Health and Safety executive (HSE-UK) were used to evaluate the work stress among Engineers, Supervisors and Workers in the public sector industries in Kerala, India. The studies were conducted in five industries out of which three are chemical and two are manufacturing. The information were collected from engineers, supervisors, and workers in the above industries and the effect of stress variables namely demand, control, managers support, peer support, relationship, role, change were analyzed. The research reveals that work stress is more in manufacturing industries than chemical industries as far as personnel factor is concerned. A reverse trend is observed for relationship. It is observed that low level of control among supervisors and workers is the main cause of work stress. The EFA yielded two factor model. The CFA also yielded a two factor model namely personnel and relationship that fits the data very well.

Keywords— Health and Safety Executive, Management standards, Exploratory factor analysis, Confirmatory factor analysis.

I. INTRODUCTION

Work related stress is a current future health and safety issue. There are many definitions of stress. The National Institute of occupational safety and health (NIOSH) defines stress as “The harmful physical and emotional response that occur when the requirements of the job do not match the capabilities, resources, needs of the worker”. Health and safety executive (HSE-UK) defines it as “The adverse reaction people have to excessive pressures or other type of demand placed upon them”.

In a recent report the European union reports that more than 41 million EU workers are affected by work related stress and 600 million working days per year are lost across EU. In addition HSE Annual report reveals that about 13.4 million days are lost due to stress. It is estimated that the cost of work related stress costs UK economy £7 billion a year in sick pay, lost production, NHS costs etc., (Palmer et al.[35]).

Further more stressed workers are more likely to be unhealthy, poorly motivated for less productive and less safe at work and their organizations are less likely to succeed in the market.

The research finds that the imbalance between efforts and rewards develop stress (The effort-reward imbalance model) and this often leads to complex health problems like coronary heart disease, (Bosma et al [8], Chandola et al [15]). It has been found that long working hours causes accident and injury (Kathryn and Harie [25], Cara Williams et al. [10]) which affects psychological health and physical health (Daraiseh et al [17], Caruso et al [12]; Dempsey et al [18]) and in turn affects job satisfaction (Karma et al. [23]; Lie and Lambart[28]) of the employees. This results in job burn out, (Masslach et al.[31]), loss in productivity, staff turnover and absenteeism, (Leonard and Ward [27], Karsh et al [24]). Work related stress can be caused by several factors such as work content, work organization and work environment, (Leonard and Ward [27]; Caulfield et al. [13]).

An individual is well adapted to cope with short term exposure to pressure, which can be considered as positive, but has a greater difficulty in coping with prolonged exposures. The research work conducted at South Australia, (Caulfield et al.,[13]) reveals that the work load pressures amounts 37% of the work related claims. The stress due to over work is even associated with increased alcohol consumption, smoking and affects families and home life.

Work related stress affects organizational morale and leads to problems like hyper tension (Mills et al. [33]), heart attacks and organizational problems like workplace violence.

Some of the theories concentrate on the stressors with in the work environment (eg: Demand –Support model, and effort-reward imbalance model, (Siegrist et al.[40]). It has been found that increased work hours have got positive association with job stress. Japanese government has implemented administrative guidance on over time which suggest that employees should not work more than 45 hours of over time per month, (Hoshuyama et al.[19]).

Generally workers with high strain job were more likely to report job stress. Approximately one of every three reported that low co-worker support and low support from the supervisors, (Shields [38]) are the sources of stress. Low co-worker support at the work place leads to intention to leave the job and it is further associated with high prevalence to
depression on the male and female workers. Chronic work stress seems to amplify the effects of psychiatric disorders, (Carollyn et al.[11]) and increased heart rate and increased blood pressure, (Tanja et al.[42]).

Many research reveals that job control increases increases employees opportunities to acquire needed resources and reduce frustration, (Jackson [20]). It has been found that better job control improves job satisfaction, (Noblet et al.[34]) and low job control often increases ambulatory blood pressure, (Cesana et al.[14]) and leads to coronary heart diseases, (Bosma et al.[8]).

The psychological job demand (in terms of quantity of work, mental requirements and time constraints), job control and social support at the work place represent perceived job stress, (Bacquer et al.[3]). Some researchers considers the job control as one of the psychosocial factors and found strong correlation with body pain and head aches, (Aaras et al.[1]).

Research reveals that physical exertion and job insecurity leads to work stress. It is also found that cumulative sleep debt due to shift work, (Kageyama et al. [21]) and work place climate, (Mc Manus et al.[30]) has found strong correlation with work stress.

Apart from time pressures, interruptions, disturbance at work, job responsibility, role conflict, ambiguity and lack of training (http://www.surreyergonomics.org) are found to be important predictors of job stress.

On 3rd November 2004 HSE-UK launched new management standards to help employers and employees to analyze and evaluate work related stress. HSE has identified six key areas, (Mackay et al. [29]; Cousins et al. [16]); that can cause work related stress. They are demands, control, support, relationship, role and change.

II. SUBJECTS AND METHODS

The main purpose of this investigation is to analyse and evaluate work related stress by using new stress management standards of HSE-UK, in the absence of well defined measures for the evaluation of work stress in India. The questionnaire for the above evaluation consists of 35 items and seven subscales (demand, control, managers support, peer support, relationship, role and change). The questions were likert type with five fixed alternatives.

A multistage sampling technique was adopted to identify the industry and subjects. At the first stage, three companies were selected from the chemical sector which constitutes 20% of the large scale public sector chemical industries in Kerala. Similarly two large scale manufacturing industries were also selected in the same way. The selection was done by simple random sampling. Accordingly the following chemical industries namely The Travancore Cochin Chemicals Ltd (TCC), The Kerala Minerals and Metals Ltd (KMML), The Travancore Cements Ltd (TCL) and two manufacturing industries namely Transformers and Electricals Kerala Ltd (TELK), Steel and Industrial Forgings Ltd (SIIL) located in the South Indian state of Kerala were selected for the study.

In the second stage the sample size of the participants were finalised, which constitutes 40% of the population from each categories using stratified proportional sampling. The resulted sample consists of Engineers (75 numbers), Supervisors (110 numbers) and Workers (675 numbers). Participants of this study consists of both male and female employees of age between 25 to 55; however, majority of the employees were males. All the employees are permanent and working in shifts on rotation and each shift consists of 8 hour duration per day. Number of women participants are about 20% of the male participants in manufacturing industries and only 10% of the male participants in chemical industries. All the industries are large scale type and located in different districts of Kerala. In short, both chemical and manufacturing industries are identical in all aspects influencing the stress except in the case of working environment, which is harsher in chemical industries than manufacturing industries, in the sense the employees are more exposed to harmful working environment.

A printed questionnaire was administrated to the participants after an oral introduction about the aim of the investigation and they were assured that their answers would be strictly anonymous. The filled up questionnaires are then carefully edited for completeness, consistency and accuracy etc. After final editing the number of questionnaires in each categories used for the analysis is presented in the table 1. The overall response rate was 96.5% (Table – 1).

<table>
<thead>
<tr>
<th>Designation</th>
<th>Chemical Industries</th>
<th>Manufacturing Industries</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TCC</td>
<td>KMML</td>
<td>TCL</td>
</tr>
<tr>
<td>Engineers</td>
<td>18</td>
<td>24</td>
<td>6</td>
</tr>
<tr>
<td>Supervisors</td>
<td>26</td>
<td>41</td>
<td>10</td>
</tr>
<tr>
<td>Workers</td>
<td>120</td>
<td>192</td>
<td>117</td>
</tr>
</tbody>
</table>

On the basis of the data so collected, analysis is performed using statistical techniques. The main tools used are normal test, one way ANOVA, correlation analysis and factor analysis. The effect of different variables on HSE management standards in the above industries are studied. A cross comparative study of the above factors in intra
An analysis of work related stress factor in selected industries in Kerala, India

industries and inter industries were also done to study work related stress and further designation wise analysis were also conducted. Structural equation modeling was made based on exploratory factor analysis and confirmatory factor analysis.

III. RESULTS

3.1 Correlation Matrix

The correlation between the variables is given in the correlation matrix. It is noted that no significant correlation exists between the variables. Hence these variables can be considered as independent variables for the purpose of research. Refer Table-2.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Demand</th>
<th>Control</th>
<th>Managers support</th>
<th>Peer support</th>
<th>Relationship</th>
<th>Role</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demand</td>
<td>1.000</td>
<td>.427</td>
<td>.237</td>
<td>.255</td>
<td>.326</td>
<td>.211</td>
<td>.252</td>
</tr>
<tr>
<td>Control</td>
<td>.427</td>
<td>1.000</td>
<td>.285</td>
<td>.236</td>
<td>.304</td>
<td>.127</td>
<td>.274</td>
</tr>
<tr>
<td>Managers support</td>
<td>.237</td>
<td>.285</td>
<td>1.000</td>
<td>.415</td>
<td>.425</td>
<td>.302</td>
<td>.479</td>
</tr>
<tr>
<td>Peer support</td>
<td>.255</td>
<td>.236</td>
<td>.415</td>
<td>1.000</td>
<td>.386</td>
<td>.280</td>
<td>.360</td>
</tr>
<tr>
<td>Relationship</td>
<td>.326</td>
<td>.304</td>
<td>.425</td>
<td>.386</td>
<td>1.000</td>
<td>.440</td>
<td>.492</td>
</tr>
<tr>
<td>Role</td>
<td>.211</td>
<td>.127</td>
<td>.302</td>
<td>.280</td>
<td>.440</td>
<td>1.000</td>
<td>.415</td>
</tr>
<tr>
<td>Change</td>
<td>.252</td>
<td>.274</td>
<td>.479</td>
<td>.360</td>
<td>.492</td>
<td>.415</td>
<td>1.000</td>
</tr>
</tbody>
</table>

3.2 Exploratory factor analysis

In the first stage, an Exploratory Factor Analysis (EFA) was conducted to identify a viable factor structure. The factor loadings are shown in the Table-3 after varimax rotation. The factor loadings for the variables, demand and control is found to be positive and factor loading for the variables, managers support, peer support, relationship, role, change are found to be negative. Therefore it is suggested to have a two factor structure with demand and control as personnel stress factor (stress-P) and others as relationship stress factors (stress-R).

<table>
<thead>
<tr>
<th>Variables</th>
<th>Factor-1</th>
<th>Factor-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demand</td>
<td>.457</td>
<td>.195</td>
</tr>
<tr>
<td>Control</td>
<td>.415</td>
<td>.003</td>
</tr>
<tr>
<td>Managers support</td>
<td>-.104</td>
<td>-.355</td>
</tr>
<tr>
<td>Peer support</td>
<td>-.016</td>
<td>-.087</td>
</tr>
<tr>
<td>Relationship</td>
<td>-.084</td>
<td>-.013</td>
</tr>
<tr>
<td>Role</td>
<td>-.342</td>
<td>-.389</td>
</tr>
<tr>
<td>Change</td>
<td>-.310</td>
<td>-.025</td>
</tr>
</tbody>
</table>

3.3 Structural equation modeling of work stress

Confirmatory factor analysis (CFA) was conducted by Analysis of Moment of Structures AMOS Version 7 Arbuckle [2]. CFA was carried out for both single factor and two factor model.

CFA is a structural equation modeling technique, (Barbara M. Byrne [4]; Boollen [7]) which determines the goodness of fit between hypothesized model and the sample data. The following goodness of fit indices are used to assess the degree of fit between the model and sample, χ^2, Tucker Lewis Index (TLI: >.90 acceptable; >.95 excellent, (Tucker et al[43]); the Comparative Fit Index (CFI: >.90 acceptable, >.95 excellent; (Bentler and Bonnet [5]; Bentler [6]) Root Mean Square Error of Approximation (RMSEA: <.08 acceptable, <.05 excellent, Brown et al [9]). CFA allows several advantages over other analytical techniques in that it allows the specification of casual relationships between observed variables and latent constructs while simultaneously accounting for item level measurement error. (Barbara M Byrne [4]).

The results of the analysis are given in Table 4 and it is found that CFA provides modest support for the two factor model, which is in agreement with the inference based on EFA.
Table 4: Goodness of fit indices

<table>
<thead>
<tr>
<th>Model</th>
<th>df</th>
<th>χ^2</th>
<th>NFI</th>
<th>TLI</th>
<th>CFI</th>
<th>RMSEA</th>
</tr>
</thead>
<tbody>
<tr>
<td>One factor model</td>
<td>13</td>
<td>129.424</td>
<td>.906</td>
<td>.861</td>
<td>.914</td>
<td>.104</td>
</tr>
<tr>
<td>Two factor model</td>
<td>13</td>
<td>47.207</td>
<td>.966</td>
<td>.959</td>
<td>.975</td>
<td>.056</td>
</tr>
</tbody>
</table>

DISCUSSION

The main aim of the study is to evaluate the work related stress in selected industries (chemical and manufacturing) in Kerala, India by using new HSE management standards. Interestingly it is found that the factors responsible for work stress is prominent in all companies, irrespective of nature/type of industry. While examining the correlation between the variables we could see a weak correlation between demand and control and between control and support. This result was expected one, and many earlier research studies, (Karasek & Theorell [22], Mcelenahan et al [32]) justify our results and suggest that jobs with high demand, low control and low support are stressful. Authoritarian managers, unfair treatment by managers and superiors, perceived discrimination by managers, harassment on the basis of race, sex, bullying, intimidation, victimization etc result in poor work relationship, (Cara Williams et al [10], Cousins et al [16]), The present study shows significant correlation between managers support and relationship and many similar studies, (Leontaridi and Ward[27], Karra et al [23], Pisarki et al [36]) support and justify our findings. Further significant correlation was found between change and relationship in this study. The organisational changes like technological changes, work place changes, unable to consult over changes with superiors, unable to adjust with the changes etc are stress rising factors, (Cousins et al [16]). The stress due to these factors can be minimized by improving the relationship. The works of many earlier researchers, (Shigemi et al [37], Launis and Pihlaja [26]) justify our findings. Moderate level of correlation are obtained between change with relationship and change with managers support. For any organization to exist successfully there should be significant correlation between these parameters, (Leontaride et al [27]).

Number of experimental and longitudinal studies has strengthened the view that control is an important casual determinant of job stress, (Shields [38], Smith et al [41]).Both single factor and two factor standardized structural equation models are given in Figure-1 and Figure-2 respectively. EFA and CFA suggest that a two factor model as it provides best fit to the given sample data.
The limitations of this study are to be kept in mind, when assessing the results. This study is limited only to public sector industries in Kerala, India, where majority of blue collar employees are males. Therefore it would be inappropriate to draw conclusions about male and female workers based on this result.

The conclusion is drawn based on the date obtained by means of self reported measures. Comparative study is not carried out because of the lack of literature or study of HSE management standards in the context of Indian Public Sector industries.

V. CONCLUSION

It is found that the HSE management standards can be effectively used for the analysis of work stress in the public sector industries in Kerala, India. It is seen that there is work stress among employees working in industries. The two factor model suggested through CFA yields better fit than single factor model.

VI. ACKNOWLEDGEMENT

Discussions with Mr. Jacob Devassy, President, International Efficiency Institute, Kochi – 27, India (Subsidiary of International Safety Institute Incorporated, Toronto, Canada) is greatfully acknowledged.

REFERENCES

