Analysis of Low Power and Area efficient CMOS Comparator Design

Pinal Patel¹, Prof. Roma K patel²

¹Parul Institute of engineering &Technology, research(PG) student,ME EC,
²Parul Institute of Engineering & Technology, Assistant Professor, Waghodia
¹pinalpateltec4u@gmail.com
²romapateltronics@gmail.com

Abstract:- In this Paper presents a new dynamic comparator is compared in terms of their voltage, speed and power. A new dynamic comparator which shows lower input offset voltage and high load drivability than the conventional dynamic comparators. This comparator not only achieves low offset but also exhibit high speed and low power in its operation, which can be used for low power high speed ADC application.

Keywords:- ADC,CMOS(Complementary metal oxide semiconductor), low offset, low power, high speed, Conventional dynamic double tail Comparator, Proposed dynamic comparator

I. INTRODUCTION

In The Recent Communication System The Bandwidth Is One Of The Most Important Resources Of The Communication System. Also There Is An Upgrading Demand For The High Data Rate. But As There Is Limited Frequency Resource Available We Need To Limit The Bandwidth. Transmitting The Information Through A Band Limited Channel Whose Signal Bandwidth Is Nearby To The Channel Bandwidth Would Result Into Inter Symbol Interference Which Can Be Problematic At The Time Of Reception At The Receiver End If It Is Left Uncontrolled [3].

![Regenerative Latch Diagram](image)

FIG.1 TYPICAL BLOCK DIAGRAM OF A HIGH-SPEED COMPARATOR

This Paper Is Organized As Follows. Section 2 Investigates The Operation Of The Conventional Comparators Of Each Structure Is Discussed. Section 3 Is Discussed Dynamic Comparator Which Is Based On The Structure Section & Simulation Results Are Addressed Followed By Conclusion In Section 4. Simulation Results From LTspice Using 180nm Technology [1] With Vdd = 0.8v And Their Comparison Is Presented In This Section 4.

II. CONVENTIONAL SINGLE-TAIL COMPARATOR

Operation :

Conventional single tail comparator have found wide applications in many high-speed ADCs. Since, they can make fast decisions due to positive feedback in the latch. Recently, many comprehensive analysis have been presented, which investigate the performance of these comparators from different aspects, such as noise, offset [2],[3].
(2) Conventional Double-tail Comparator:
A Conventional double-tail comparator is shown in figure (3). This Comparator can operate at lower supply voltages compared to the conventional dynamic comparator. The double-tail makes possible both a large current in the latching stage and Mtail2, for fast latching of the input common-mode voltage (Vcm), and a small current in the input stage (small Mtail1), for low offset. The operation of this comparator is as follows fig(3). During reset phase when clk=0, Mtail1 & Mtail2 are off, transistor M3-M4 are pre-charge fn & fp nodes to VDD, which transistors MR1 and MR2 to discharge the output nodes to ground. Then next is decision making phase clk=VDD, then Mtail1 & Mtail2 turn on. After that M3-M4 turn off and voltages at nodes fn and fp start to drop with the rate defined by Itail1/C fn(p) and on top of this, input differential voltage(V) fn(p) will make up.

(3) Double-tail Dynamic Comparator:
A Dynamic double-tail comparator is shown in fig (3). Double tail comparator has two tail transistors. Double tail comparator is used for low power application. In this technique, increase the voltage difference between the output nodes in order to increase the latch regeneration speed. For this purpose, two control transistors have been added to the first stage in parallel to m3 and m4 transistor but in a cross coupled manner. Double tail comparator has two operation nodes, the reset phase and the decision making phase. When clk=0 known as reset and clk=VDD, it is known as decision making phase. When clk=0, nMOS transistor is in off and pMOS transistor is in on. When clk=VDD nMOS is in on and pMOS transistor is in off.
Fig. 4 Dynamic Dual-tail Comparator

III. SIMULATION RESULT

Conventional Single-tail Comparator:
Table 1: Number of Transistor on each Comparator

<table>
<thead>
<tr>
<th>Circuit</th>
<th>No. of Transistor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional single-tail Comparator</td>
<td>9</td>
</tr>
<tr>
<td>Conventional double-tail Comparator</td>
<td>12</td>
</tr>
<tr>
<td>Dynamic Dual-tail Comparator</td>
<td>14</td>
</tr>
</tbody>
</table>

IV. CONCLUSION

In this paper present a various circuit we present a double tail dynamic comparator with more no of transistor .This new dynamic double-tail comparator will reduce voltage, delay, power and high speed compare to other comparator.

REFERENCES

[1]. David Marche, yvon Savaria(IEEE june-2009),”An improved Switch Compensation Technique for Inverted
[2]. R-2R Ladder DACs”
[5]. Jun He, sanyi Zhan, degang Chen(IEEE May-2009),”Analyses of Static and Dynamic Random offset
[6]. Voltages in Dynamic Comparators”
[7]. Samaneh Babayan-Mashhadi, “Analysis and design of a Low-Voltage low-power Double Tail Comparator”, Vol.22,Feb-2014
[9]. Technique”, e-ISSN 2321-3159,2014
[10]. Wan Rosmaila Wan ahmed(2012), “High Speed with low Power Folding and Interpolating ADC two types of Comparator in CMOS 0.18μm Technology”
[11]. www.3gpp.org ,ERICSSON” press backgrounder on mobile broadband and LTE”
[13]. VLSI Design by Wayne Wolf”